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A. Overview

In Appendix B, we introduce the data splits and collections
of pre-training and downstream datasets. In Appendix C,
we introduce details of the pre-training and fine-tuning pro-
cess. In Appendix D, we give brief descriptions of some
algorithms. In Appendix E, we discuss the performance of
SSL and mSSL methods on the CC-CCII dataset. In Ap-
pendix F, we visualize the results of downstream tasks and
patch-to-patch correspondence after pre-training.

B. Data collections and splits

We follow previous open-source data splits and split
datasets without public splits.

Pretraining datasets. For the CT data, we use the 10k
collection provided by the official implementation of the
method [5]. For MRI data, we collect the OASIS dataset
containing T1, T2, Flare, and MRA sequences and filter out
images with the shortest side smaller than 64, resulting in a
total of 6,605 volumes. For PET data, we utilize the whole-
body full-dose volumes from UDPET as well as brain vol-
umes from ADNI, resulting in a total of 3,519 volumes. The
splits of data collection will be released upon publication.

Modality Dataset Samples

CT BTCV 24
CT TCIA Covid19 722
CT FLARE23 4000
CT HNSCC 1071
CT LiDC 589
CT LUNA16 843
CT TotalSegmentor 1203
CT STOIC 2021 2000

Total - 10502
MRI OASIS3 6605

PET UDPET 1238
PET ADNI 2281
Total - 3519

Table 1. The data distribution of training datasets.

Downstream datasets. For downstream tasks, we fol-
low previous data splits [3, 5] on BTCV, CC-CCII, BraTs
21, and BraTs 23. For other datasets, we split the data by a
2:8 ratio. In the CC-CCII dataset, instances are classified as
novel coronavirus pneumonia (NCP), common pneumonia
(CP), and normal controls (Normal). In the ADNI dataset,

the split is performed at the subject level, where a single
subject may have multiple imaging volumes. The data de-
tails are as shown in Tab. 2:

Modality Dataset Task Samples

CT BTCV Segmentation 30
CT MSD-Liver Segmentation 131
CT MSD-Lung Segmentation 63
CT MSD-Spleen Segmentation 41

MRI BraTs 21 Segmentation 1251
PET AUTOPET Segmentation 1014
CT CC-CCII Classification 4178

PET ADNI Classification 2876
MRI BraTs 23 Image-to-Image translation 1470
PET UDPET Reconstruction 377

Table 2. Dataset details of downstream tasks.

C. Implementation details

For pre-training, we follow previous work [3–5] and use one
A100 GPU for CT training in the 1k dataset. We use four
A100 GPUs for the 10k CT dataset, 3k PET dataset, and 6k
MRI dataset separately. We employ an AdamW optimizer
with the momentum set to 0.9. All methods are trained with
the input size 96 → 96 → 96. For the size of the memory
queue in Lg , we adopt 90 and 200 for 1k CT data and other
pre-training separately.

For fine-tuning on downstream tasks, we use four A100
GPUs for fine-tuning in AUTOPET and BraTs 23 while us-
ing one A100 GPU for other datasets. Specifically, for clas-
sification tasks, we employ Swin-B with MLP layers as the
backbone. For the BraTs 21 and BraTs 23 tasks, the first
layer of Swin-B is not initialized by the pre-trained model
because of different input channels. For segmentation tasks,
we adopt a sliding window strategy with an overlap ratio
of 0.75. Following previous work partly, we set training
epochs to 3000, 1000, 1000, 1000, 300, 400, 100, 300, and
300 for datasets corresponding to Tab. 2.

D. Brief descriptions of algorithms

D.1. Ground truth of patch correspondence: A toy

sample

As shown in Fig. 1, the 2nd patch in Vi corresponds to the
4th patch in V →

i . In our implementation, the patch size is
the same as the patch size of the tokenizer in Vision Trans-
former. The process of patch tokenizer and patch correspon-
dence can be viewed in Fig. 2.



Figure 1. A toy sample to describe calculating ground truth of
correspondent patches.

Figure 2. The visualization of patch-to-patch correspondence of
different methods.

D.2. The dictionary of contrastive learning

The keys in the dictionary consist of two sets:
The first set is {q→j = ω→ ↑ ε→(vj)|vj ↓ V , j ↔= i, j =

1, 2, ..., N} ↗ {q→→

i = ω→ ↑ ε→(v
→

i)}, encoded on-the-fly by
the momentum-updated encoder ω→ ↑ ε→, where ω→ and ε→

are the projection head and the encoder of the teacher model
(e.g., Vision Transformer [1, 2]). q→j and q→

→

j are the global
features encoded by ω→ ↑ ε→. A feature will be randomly
selected from {q→j = ω→ ↑ ε→(vj)|vj ↓ V, j ↔= i, j =
1, 2, ..., N} to update the queue.

The second set is the feature set from the queue {y→k|k =
1, 2, ...,K}, which is updated by every training iteration,
where K is the length of the queue.

By combining both sets, we obtain the dictionary
{q→m|m = 1, 2, ...,K + N ↘ 1}. The negative samples
in the dictionary include both intra-subvolumes from the
same volume and inter-subvolumes from different volumes.
This negative sampling strategy increases the diversity of
the samples.

D.3. Sinkhorn & dual softmax

We compare the results of different iteration numbers of
Sinkhorn and the dual-softmax operator as follows:

Increasing the number of iterations for the Sinkhorn al-
gorithm generally leads to improved segmentation perfor-
mance for three tasks. The dual-softmax operator performs
well across all three tasks, which is adopted for other modal-
ities and tasks in this paper. The pseudocode of differen-
tiable Sinkhorn in log domain is as follows, where we set
ϑ = 1.

D.4. Soft regularization for patch-to-structure con-

sistency

The optimal transport process aims to establish a patch-to-
patch correspondence between patch sets across volumes.
However, due to the lack of labels, it is unclear whether
the patches we define for training correspond to a complete
anatomical structure (e.g., a training patch may represent
only a part of an organ). If the patch tn from the volume Vi

has multiple similar patches in volume V →

i , enforcing a strict
patch-to-patch correspondence may distort this relationship.

To address this issue, we use the Sharpe ratio as a soft
regularization factor for patch-to-patch loss. The Sharpe ra-
tio is:

srnVi
=

max(Dn)↘ 1
N

∑N
m=1 Dn

ϖDn

, (1)

where Dn represents the similarity vector of a patch feature
tn from Vi with the patch feature set from V →

i . Here, the
similarity is measured using Cosine Similarity. The srnVi

reflects the variability of the similarity distribution.
In practice, the majority of patch pairs are negative se-

mantics. When the patch-to-patch correspondence is estab-
lished, the srnVi

tends to attain a large value, as the distri-
bution Dn exhibits a narrow variance and a small mean, in-
dicating a single extreme value distribution. However, if
the patch tn has multiple similar local features in volume
V →

i , the Sharpe ratio may decrease. This occurs because the
presence of multiple extreme values in the distribution Dn

leads to an increase in both the mean and variance. Thus,
the Sharpe ratio is employed to weight the patch-to-patch
losses, thereby mitigating distortions in one-to-multiple re-
lationships caused by enforcing patch-to-patch correspon-
dence in the optimal transport process.

DICE(%)
Method

MSD Liver MSD Lung MSD Spleen

S2DC(Sinkhorn/iter10) 82.37 61.81 94.51
S2DC(Sinkhorn/iter100) 83.29 66.62 95.70
S2DC(Dual-softmax) 83.43 64.40 95.73

Table 3. Results of Sinkhorn with different iterations and dual-
softmax operator. Best and second best are highlighted.



Algorithm 1 Differentiable Sinkhorn Algorithm in Log Do-
main
Require: Similarity matrix M ↓ Rn↑m, row and column

marginals r ↓ Rn, c ↓ Rm, regularization parameter
ϑ > 0, maximum iterations T

Ensure: Optimal transport matrix M̂
1: Initialize f = 0n, g = 0m ϱ Dual potentials
2: Set K = ϑM ϱ Regularized cost matrix
3: for t = 1 to T do

4: f ≃ ↘ϑ log

(
r

exp( g
ω )·exp(K

ω )

)
ϱ Update row

potential

5: g ≃ ↘ϑ log

(
c

exp( f
ω )

↑·exp(K
ω )

)
ϱ Update column

potential
6: end for

7: Compute M̂ = exp
(

f+g+K
ω

)
ϱ Transport matrix in

log domain
8: return M̂

E. Outperform existing methods on CC-CCII

We follow previous work to pretrain on 1.6k CT data (i.e.,
BTCV, TCIA Covid19, and LUNA) and fine-tune on CC-
CCII. The results of general SSL and medical SSL methods
are shown in Tab. 4. Our methods outperform general SSL
and medical SSL methods. In addition to Swin-UNETR, we
also do experiments in UNETR structures. The S2DC pre-
training result in UNETR outperforms other results based
on the UNETR structure.

F. Result visualization

F.1. Visualizations of downstream tasks

We visualize some segmentation results and image-to-
image translation results as shown in Figure 5 and 3. From
Figure 5, S2DC shows good segmentation results on fine
anatomical structures. From Figure 3, we can find T1⇐T2
performs worse than T1⇐T1ce. In the T1 sequence, wa-
ter and fluids appear dark, which is the opposite of the T2
sequence. That might lead to difficulty in translation.

F.2. Visualizations of patch-to-patch correspon-

dence.

We visualize the patch-to-patch correspondences after pre-
training. As shown in Fig. 4, our method achieves more
reliable alignments with fewer misalignments compared to
existing approaches.

Method Network Accuracy(%)

From scratch

UNETR - 88.92
Swin-UNETR - 88.04

1.6k data

With General SSL

MAE3D UNETR 89.47
MoCo v3 UNETR 84.95
Jiagaw Swin-UNETR 86.88
PositionLabel Swin-UNETR 97.54
With Medical SSL

PCRLv1 Swin-UNETR 88.72
PCRLv2 Swin-UNETR 89.15
Rubik++ Swin-UNETR 89.23
Swin-UNETR Swin-UNETR 89.45
SwinMM Swin-UNETR 89.61
VoCo Swin-UNETR 90.83
[HTML]EFEFEF S2DC UNETR 89.63
[HTML]EFEFEF S2DC Swin-UNETR 93.85

10k data

With Medical SSL

PCRLv2 Swin-UNETR 93.07
Swin-UNETR Swin-UNETR 94.15
SwinMM Swin-UNETR 94.80
VoCo Swin-UNETR 94.60
[HTML]EFEFEF S2DC Swin-UNETR 95.34

Table 4. Results of different methods on CC-CCII. Most results
are drawn from [5]. We retrain methods on 10k pre-training data
and fine-tune on CC-CCII. Best and second best are highlighted.

Figure 3. The visualization of image-to-image translation results
of BraTs 23.



Figure 4. The visualization of patch-to-patch correspondence of
different methods.

Figure 5. The visualization of segmentation results of BTCV.
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