Supplementary Material: Augmented and Softened Matching for Unsupervised Visible-Infrared Person Re-Identification

Zhiqi Pang¹ Chunyu Wang^{1*} Lingling Zhao¹ Junjie Wang²

¹ Harbin Institute of Technology, China

² Nanjing Medical University, China

zqpang98@gmail.com, chunyu@hit.edu.cn, zhaoll@hit.edu.cn, junjiehit@163.com

1. Algorithm

Algorithm 1 Augmented and softened matching

Input: Unlabeled data $\{x_i^v\}_{i=1}^{N^v}$ and $\{x_i^r\}_{i=1}^{N^r}$, encoder parameterized by θ_E , training epochs and iters.

- 1: **for** i = 1 to epochs **do**
- 2: Extract features of $\{x_i^v\}_{i=1}^{N^v}$ and $\{x_i^r\}_{i=1}^{N^r}$ with encoder
- 3: Calculate cluster centroids based on Eq. 1 and Eq. 2 respectively
- 4: **for** j = 1 to iters **do**
- 5: Optimize θ_E to minimize the loss in Eq. 5
- 6: end for
- 7: end for
- 8: Save the intra-modality pseudo-labels
- 9: **for** i = 1 to epochs **do**
- 10: Apply channel augmentation to $\{x_i^v\}_{i=1}^{N^v}$ to obtain $\{x_i^a\}_{i=1}^{N^a}$
- 11: Extract features of $\{x_i^v\}_{i=1}^{N^v}$, $\{x_i^a\}_{i=1}^{N^a}$ and $\{x_i^r\}_{i=1}^{N^r}$ with encoder
- 12: Perform cross-modality augmented matching
- 13: Perform soft-labels momentum update
- 14: **for** j = 1 to iters **do**
- 15: Optimize θ_E to minimize the loss in Eq. 18
- 16: end for
- 17: **end for**
- 18: **return** Trained θ_E .

2. Sensitivity Analysis

2.1. Update rate α

 α controls the update rate of the inter-modality soft pseudolabels. When $\alpha=1.0$, the soft-labels momentum update becomes ineffective, and the soft-labels are converted into hard-labels. In this case, the model only relies on the match-

Figure 1. The effect of α on model performance.

Figure 2. The effect of λ_{csc} and λ_{chc} on model performance.

ing results of the current epoch for optimization. As shown in Fig. 1, when $\alpha=0.5$, the model achieves the best performance on both datasets. When $\alpha=1.0$, the model's performance is poorer, which also validates the effectiveness of the soft-labels momentum update.

2.2. λ_{csc} and λ_{chc}

As shown in Fig. 2, we observe that when $\lambda_{csc}=0.5$ and $\lambda_{chc}=0.5$, the model achieves optimal performance on both datasets. When λ_{csc} and λ_{chc} are set to 0.25 or 1, the model performs poorly. This is because small weights limit the contribution of L_{csc} and L_{chc} to the model's optimization, while large weights may introduce excessive incorrect inter-modality optimization directions. Since the reliability of intra-modality pseudo-labels is generally higher

^{*}Corresponding author: Chunyu Wang

than that of inter-modality pseudo-labels, the optimization should still primarily rely on the more reliable supervision signals within each modality.