Supplementary Material

The supplementary material includes four key sections de-
signed to provide a comprehensive evaluation of ForeSight.
Section A presents additional experimental analysis on per-
formance in challenging scenarios.Section B provides addi-
tional ablation results for design decisions. Section C of-
fers a detailed class-wise analysis, highlighting ForeSight’s
superior performance across diverse object categories, in-
cluding challenging cases such as trailers and motorcy-
cles. Section D discusses the method’s limitations, includ-
ing dependencies on high-quality data, challenges in ad-
verse weather, the need for standardized forecasting bench-
marks, and adaptability to dynamic scenes, while proposing
avenues for future improvement.

A. Detection Performance Analysis

We highlight ForeSight’s enhanced performance on chal-
lenging scenarios like low-visibility and occluded objects,
critical for safe autonomy. While these cases are a small
portion of the data, they are crucial long-tail challenges.
Leveraging past forecasts, our model can more effectively
detect objects with limited sensor visibility and coverage.
Quantitative analysis with the ResNet-50 configuration of
ForeSight confirms improved performance on low-visibility
objects, with <40% of the object visible, and achieve a
0.9% higher Average Recall (AR) on these challenging ob-
jects relative to the baseline as seen in Table 4.

Methods 0-0.4 | 0.4-0.6 | 0.6-0.8 | 0.8-1.0
StreamPETR [59] | 0.401 | 0.455 0.448 | 0.468
ForeSight (ours) 0.410 | 0.461 0.451 | 0.468

Table 4. Detection performance using average recall across differ-
ent object visibility levels.

B. Additional Ablations

Ablation for historical frame count. Table 5 presents
additional experiments varying historical frames. Perfor-
mance improves with more frames, with diminishing gains
beyond 4 frames. In addition, as many prior works also use
4 frames, this choice enables fair comparison.

Ablation replacing historical queries with spatial
queries. In Table 6, replacing historical queries with spatial
ones (first row) while keeping 900 total detection queries
results in a reduction of 10.5% mAP and increase of 3.4 m
minADE compared to our model (last row), isolating the
benefit of temporal information from query count.

Study of the relation between forecasting errors and
detection accuracy. We conduct additional experiments
varying the query propagation mechanism (Table 6). Start-

Frames | Det. Queries | CA Queries | mAP 1

0 900 (900+0) 0 0.361
1 900 (644+256) 256 0.419
2 900 (644+256) 512 0.448
4 900 (644+256) 1024 0.466
8 900 (644+256) 2048 0.467

Table 5. Ablation of historic frames, detection queries (initialized
+ propagated), and cross attention (CA) historic queries.

ing from a detection memory queue with stationary past
queries, adding forecasting decoder (FD) layers improves
forecasting accuracy, which in turn enhances detection,
highlighting the synergy between tasks.

Query Propogation | mAP 1 | minADE |

Constant Pos. 0.445 4.13
FD 1 Layer 0.458 0.979
FD 3 Layers 0.466 0.709

Table 6. Ablation of query propagation approaches used for his-
torical detection queries.

C. Class-wise Analysis

In Table 7, we present a detailed comparison of class-wise
performance for the V2-99 backbone on the NuScenes val-
idation set. We show results for AP at the 2.0m threshold.
ForeSight consistently outperforms the baseline comparison
across most object classes, demonstrating its robustness and
versatility in detecting a diverse range of objects in dynamic
driving scenarios.

Significant improvements are observed in challenging
classes such as trailers and motorcycles, where the mAP
gains are 15.0% and 1.8%, respectively. These categories
often suffer from lower detection rates due to less frequent
appearance in the data, irregular shapes, and variability in
motion patterns. By leveraging enhanced temporal model-
ing and spatial context, ForeSight can provide a more accu-
rate and reliable detection for these difficult cases.

Additionally, for high-performance classes such as cars
and pedestrians, ForeSight continues to achieve competi-
tive or superior results, maintaining its overall edge in per-
formance. This demonstrates that the proposed method not
only excels in challenging scenarios but also scales effec-
tively across well-represented object categories.

These results underscore ForeSight’s ability to general-
ize across object types and validate its superiority in real-
world applications requiring precise multi-class detection.



Methods | Backbone | Car? | Pedestriant | Bicyclet | Bus? | Motorcycle? | Trailert | Truck?t
StreamPETR* [60] V2-99 0.810 0.729 0.603 0.710 0.627 0.366 0.628
ForeSight (ours) V2-99 0.812 0.731 0.608 0.750 0.638 0.421 0.607

Table 7. Detection performance on NuScenes validation set comparing class-wise performance based on AP with a 2.0 meter distance
threshold. We observe that our model improves on nearly all classes of objects and performs significantly better on challenging classes

with lower performance such as trailers, motorcycles, and bicycles.

The improved performance on underrepresented or chal-
lenging object classes further highlights the method’s en-
hanced temporal reasoning and adaptability.

D. Limitations

Limited Comparisons for Forecasting. Due to the lack of
standardized forecasting-from-perception benchmarks, our
evaluation relies on adapting the NuScenes detection and
tracking dataset following the approach of past works. Di-
rect forecasting comparison to other end-to-end methods is
challenging due to differing configurations (e.g. backbones,
perception models) and a lack of standardized evaluation
frameworks. Future work will explore establishing a com-
mon benchmark to evaluate similar methods with common
upstream models to provide a proper fair comparison.

High-Quality Data Dependancy. The effectiveness of
ForeSight may depend on the quality of the input data.
Since we rely on tight coupling of temporal information er-
rors in camera calibration, localization, or map inaccuracies
can propagate through the pipeline, potentially degrading
both detection and forecasting outcomes. Due to the feed-
back loop in the pipeline, it could also be more susceptible
to these errors that deteriorate performance. The robustness
of errors could be explored in future work along with miti-
gation strategies.

Adverse Weather. A potential limitation of ForeSight
could also be sensitivity to adverse weather conditions such
as heavy rain, snow, or fog. These conditions can degrade
the quality of camera sensor inputs by obscuring object
boundaries, reducing contrast, and introducing noise. As
ForeSight relies heavily on vision-based perception, any re-
duction in image quality directly impacts both detection and
forecasting accuracy. Future work could explore the in-
tegration of additional sensor modalities, such as LiDAR
or radar, which are more robust to weather-induced impair-
ments. Robust data augmentation strategies simulating ad-
verse weather conditions during training may also improve
the resilience of the model in such challenging environ-
ments.

Simplified Scene Representations: The method’s re-
liance on predefined object categories limits its adaptability
to environments with novel object classes not represented in
training data. The ability to segment or detect map elements
online has also been explored in other works and could be

integrated into this method instead of using an offline map
or no map.
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