
MatchDiffusion: Training-free Generation of Match-Cuts

Supplementary Material

We encourage the reader to visit our website
https://matchdiffusion.github.io to better
visualize the results shown in the paper.

This website provides additional insights and visu-
alizations to complement the document. We show mul-
tiple videos of results that we showed as frames in the
manuscript. We also include many more interesting Match-
Cuts generated by MatchDiffusion. Additionally, we show a
few examples of famous match cuts found in TV shows and
movies to give a deeper understanding of what a match-cut
is. In the following document we show a few more anal-
ysis of our method and a few more frame visualizations
of match-cuts. However, all these qualitative results are
also included in the website. We create visualizations
by concatenating the first half of one video with the second
half of the other. The method of combining these halves
is user-selectable; on our website, we showcase examples
using Straight Cuts, Alpha Blending, and Flickering transi-
tions.

A. Alternative Methods for Match-Cuts
Our results demonstrate that MatchDiffusion outperforms
existing alternatives for match-cut synthesis. However, we
further analyze why these alternative methods, while seem-
ingly viable, do not fully address the challenges of match-
cut generation. We present both a conceptual discussion and
additional experimental evidence to highlight the funda-
mental differences between match-cut synthesis and com-
mon video editing tasks.

Why Video Editing Methods Fall Short. We articulate
further our reasoning for the baselines chosen in the main
paper. Recent video editing tasks, such as video-to-video
(V2V) translation [3, 27] and motion transfer [50, 54],
could potentially synthesize match cuts by generating com-
positionally similar videos. However, as explained be-
fore, both approaches impose constraints that limit their
applicability to match-cut generation. In contrast, match-
cuts require alignment in either structure, motion, or both,
without enforcing one-to-one constraints on the generated
videos. This makes match-cut creation fundamentally dif-
ferent from any existing video morphing task. Unlike in-
terpolation or morphing, which focus on smooth transfor-
mations between frames, match cuts demand independent
synthesis while preserving a strong visual relationship be-
tween two separate scenes. This is the reason behind our
design choice to synthesize a pair of videos, and later join
them in a cut with post-processing.

Method + Backbone CS Mot LPI

UniEdit [3] + LaVie [47] 0.30 0.67 0.46
MatchDiffusion (ours) + LaVie [47] 0.31 0.76 0.28

Table A2. Comparison of MatchDiffusion on LaVie with a Video-
to-Video baseline.

Our method allows the model to naturally impose con-
straints on motion, structure, or both, depending on the
input prompts, by leveraging the Joint Diffusion mecha-
nism 3.2, while still allowing each prompt to be followed
independently during Disjoint Diffusion 3.3. This enables
the synthesis of match cuts without the structural rigidity of
V2V methods or the motion constraints of motion transfer-
based approaches.

MatchDiffusion on other backbones and V2V varia-
tions. We implemented MatchDiffusion on one of the
best performing models at the time of submission, i.e.
CogVideoX-5B, along baselines. At the time of submission
CogVideoX-5B supported as V2V method SDEdit, which
we used for our experiments. To extend our analysis to dif-
ferent V2V pipelines, we revisit the quantitative compari-
son from Table 1 in the main paper and extend it with an
additional experiment using a more recent V2V baseline,
UniEdit [3]. UniEdit uses LaVie as backbone in the official
implementation. For a fair comparison, we implement our
MatchDiffusion sampling using LaVie as a base T2V model
(the same used by UniEdit) and use it for comparison.

As shown in Table A2, MatchDiffusion consistently out-
performs UniEdit across all metrics, reinforcing the key in-
sight that match-cut generation is not merely a variation
or extension of existing video morphing or editing tasks.
These results further justify the need for dedicated method-
ologies designed specifically for the unique constraints of
match cuts. Furthermore, they demonstrate how MatchDif-
fusion can be seamlessly integrated into any video diffusion
baseline. Additionally, just as the metrics indicate the supe-
riority of MatchDiffusion, the qualitative results presented
in Figure A10 further support this conclusion. The match-
cuts produced by MatchDiffusion exhibit significantly more
coherent transitions between the two scenes, underscoring
the effectiveness of our approach in both numerical evalu-
ations and visual quality. We invite the reader to see these
results our website .

https://matchdiffusion.github.io
https://matchdiffusion.github.io
https://matchdiffusion.github.io
https://matchdiffusion.github.io


“a parchment catching fire” “A sunset at the ocean.”
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“an autumn leaf falling” “a butterfly fluttering”
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Figure A10. Generated match-cuts with UniEdit vs MatchDiffusion on LaVie. UniEdit results are in rows 1 and 3. MatchDiffusion
results are in rows 2 and 4. Although UniEdit does preserve some structural characteristics (note the scene composition in the leaf to flower
transformation), MatchDiffusion shows more consistent transitions preserving structure while diverging in semantics.

B. Additional Analysis.
Effect of classifier-free guidance. We analyze here the
effect of the CFG (classifier-free guidance) parameter when
making match-cuts with MatchDiffusion. Here we fix the
K and analyze the different metrics when varying CFG. In
Figure A11, we observe that larger CFGs tend to drop the
CLIPScore but also make the entanglement (Motion) of mo-
tion and structure (LPIPS) to be stronger. Similar to the K,
parameter there is a sweet spot in which Motion and Struc-
ture and shared across the two videos, while still following
the prompt. We found that a CFG between 5 to 7 works well
for the majority of the cases. In rare occasions, we found
CFG = 10 also performing well for specific prompts.

Different combination function f . In Section 3.2 we de-
fined f as the average of the estimates from the two paths.
However, one could try a different strategy to combine the
two path estimates. In Figure A12 we show the results
but this time combining the two paths by linearly decay-
ing the weight of one another until making them indepen-
dent. This would change the previous approach of the com-
bination of the two paths from a step function to a simple
linear decay. The results, show that variations of K (dif-

Figure A11. Effects of CFG. By increasing classifier-free guid-
ance, we report significantly degraded performance in all metrics.
We tune optimally the parameter between 5 and 7 for most cases.

Figure A12. Different f . We replace the f used in the main pa-
per with linearly interpolating between the two diffusion paths de-
pending on K.



“a fridge full of bottles and vegetables.” “a view of a city’s downtown.”

“a video of a camera panning along a pier on a lake.” “a video of a red carpet with few people walking on it.”

Figure A13. Sampling match-cuts. MatchDiffusion can automatically synthesize match-cuts based on the prompts in green and red. Each
row shows a different sample coming from the same pair of prompts, providing the user with more alternatives for the same match-cut.

fusion step in which the decay starts) yield more motion-
entangled results, quantified by the higher values in motion
fidelity (middle plot). We advocate anyways that having
more flexibility in the motion (hence with lower motion fi-
delity) allows to generate more variable videos, assuming
outputs respecting the definition of a match-cut. Hence, we
still selected averaging as our f of choice.

Visual quality From the analysis in the main paper, Fig-
ure 9, we notice that applying MatchDiffusion has negligi-
ble quality impact on CLIPScore with respect to the origi-
nal model (i.e. the case in which K = 0). Here, we extend
the discussion on the visual quality of the generated out-
puts. We calculate frame-wise aesthetic/technical quality
with NIMA [43], obtaining 4.40/4.61 for base CogVideoX
and 4.14/4.49 for Ours, totaling a marginal performance
decrease (-5.9%/-2.6%). We also evaluate the blurriness
of outputs, to understand if the generation of match-cuts
would lead the network to generate more ambiguous (i.e.
blurred) videos. To do so, we process frame-wise the gen-
erated videos with the blur detector proposed in [2] and av-
erage the obtained blurriness masks to get a single value.
We report 0.149/0.144 for CogVideoX-5B baseline/ours (-
3.35%). Performance degradation is negligible, demon-
strating that MatchDiffusion can benefit from the visual
quality of highly performing video diffusion models.

Sampling We show results of different match-cuts pro-
duced for the same prompt and the same parameters, by just
sampling with different seeds. We observe that sampling
from the method can help at creating different interpreta-
tions of the same matching concepts. We show sampling
from our method in Figures A14, A15, A16, and A17.

Cost of K optimization One may argue that K still re-
quires tuning, hence a further discussion is needed. In our
experiments, we did not experiment with more than 3 differ-
ent values of K, that were often sufficient to find an aesthet-
ically pleasant match-cut. Compared to the significant costs
associated to a creation of a match-cut without MatchDif-
fusion, the cost of optimization is minimal. Moreover, let
us stress again results highly depend on the user’s aesthetic
perception. In practice, any K would result in something
potentially usable as a match-cut. This is also further proved
by our experiment in Section 4.5.

C. Future directions

We briefly explored two potential directions to improve the
controllability of our method. The first, illustrated in the
top row of Figure A13, involves altering the colors of one
video using an edge-based ControlNet. Our observations in-
dicate that ControlNet, when combined with our approach,
can introduce additional stylistic effects while still preserv-
ing the intended match cut. A second, and perhaps more
promising, direction is conditioning on an input video to
generate a synchronized counterpart from a text prompt,
such that the pair forms a match cut. This task is consid-
erably more challenging, as the input video imposes con-
straints on how the pre-trained diffusion model can achieve
the cut. We attempted a simple strategy by replacing x′

t

with the noisy encoding of the reference video at each de-
noising step. Although the resulting quality is lower com-
pared to our main method, the approach can still produce
reasonable match cuts. We present one successful example
in Figure A13, where the system takes an existing adver-
tisement video as input and generates a red-carpet scene to
create a compelling match cut.



“a bone-like fossil thrown to the sky.” “a sleek spaceship flying through the space.”

Figure A14. Sampling match-cuts. MatchDiffusion can automatically synthesize match-cuts based on the prompts in green and red. Each
row shows a different sample coming from the same pair of prompts, providing the user with more alternatives for the same match-cut.

D. Limitations
A key limitation of our method lies in its reliance on prompt
quality and creative input. While the system can gen-
erate visually appealing match-cuts, achieving truly com-
pelling results often depends on carefully crafted prompts
and sampling. We found that prompts inspired by existing
match-cuts, such as those from iconic film scenes or curated
blog posts, significantly improve the system’s success rate,
whereas randomly devised prompts frequently fail. This
underscores that the creative process heavily relies on hu-
man ingenuity to guide the system. Currently, the system
autonomously determines key aspects of the match-cut, in-
cluding structure, color, layout, and motion. Future work
could focus on providing users with finer control over these
elements, enabling a more deliberate and customized match
cut generation process.

E. Application on images
Although our paper focuses on match-cuts, we also found
that by using an Image-Diffusion model like Stable Dif-
fusion 1.5 [38], we can create couples of images that also
share structural similarities while being semantically di-
vergent. We did not include these results in the main
manuscript as we are unsure whether this has any appli-
cations on real-world problem. However, the results look
visually appealing, and as such they may enable creative
use-cases. We show some results of MatchDiffusion using
SD1.5 as backbone in Figures A18, A19.



“a camera showing a colorful spice market.” “a painter palette of oil colors.”

Figure A15. Sampling match-cuts. MatchDiffusion can automatically synthesize match-cuts based on the prompts in green and red. Each
row shows a different sample coming from the same pair of prompts, providing the user with more alternatives for the same match-cut.



“a flower blooming in the dark.” “a video of fireworks over a city.”

Figure A16. Sampling match-cuts. MatchDiffusion can automatically synthesize match-cuts based on the prompts in green and red. Each
row shows a different sample coming from the same pair of prompts, providing the user with more alternatives for the same match-cut.



“a glowing ember flickers within a campfire.” “a city skyline lights up at dusk.”
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Figure A17. Sampling match-cuts. MatchDiffusion can automatically synthesize match-cuts based on the prompts in green and red. Each
row shows a different sample coming from the same pair of prompts, providing the user with more alternatives for the same match-cut.



Figure A18. Examples of MatchDiffusion with Stable Diffusion 1.5.



Figure A19. Examples of MatchDiffusion with Stable Diffusion 1.5.
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