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A. Project Page and Algorithm
Please check the https://rishubhpar.github.io/DAEdit/ for
high-resolution visual results. We have provided the de-
tailed algorithm for both of our depth-aware editing tasks -
scene composition and object insertion in Alg.1.

B. User interface for providing depth input
Our method requires an input depth value d0 for object
placement and composing scenes at a particular depth. Pro-
viding depth value for these tasks can be challenging to the

Algorithm 1 Algorithm of proposed approach

1: Scene Compositing
2: Define: ωmdf : guidance strengths; N : number of guidance steps; Tc:

annealed timestep; Ifg , Ibg : foreground, background (fg/bg) images;
dfg , dbg : fg,bg depths; cfg , cbg : fg,bg text prompts; Cc: composed
scene text prompt; θsd: depth conditioned SD-v2; dp: depth value for
composing the scene Ψt: diffusion features at timestep t

3: (xfg
T ,Ψfg

1:T )← NullInversion
(
θsd, Ifg , cfg , dfg

)
4: (xbg

T ,Ψbg
1:T )← NullInversion

(
θsd, Ibg , cbg , dbg

)
5: Mfg , Mbg ← DeGLaD

(
dfg , dp

)
▷ Getting layered masks

6: dc ← dfg ⊗Mfg + dbg ⊗
(
1−Mfg

)
7: initialize: xT ← xbg

T
8: for t = T to 1 do ▷ denoising loop
9: if t > Tc then ▷ apply guidance only for t < Tc

10: for n = 1 to N do ▷ guidance loop
11: Ψedit

t ← extractfeatures
(
θsd, xt, Cc, dc

)
12: xt ← xt − wmdf∇xtL(Ψ

fg
t ,Ψbg

t ,Ψedit
t ) ▷ guid. step

13: end for
14: end if
15: xt−1 ← Updatestep

(
xt, θsd

)
▷ single denoising step

16: end for
17: Object Placement
18: Define: ωmdf : guidance strengths; N : num. guidance steps; Tc:

annealed timestep; I: input background image; d: input image depth;
c: input image text prompts; θinp: AnyDoor (inpainting model); cinp:
input box/mask for inpainting; dp: depth value for placing object

19: (Ψt, xT )← NullInversion
(
θa, I, cinp

)
20: Mfg , Mbg ← MPI

(
d, dp

)
21: initialize xT ← N (µ, σ2)
22: for t = T to 1 do ▷ denoising loop
23: if Tc > t > 0 then
24: for n = 1 to N do ▷ guidance loop
25: Ψedit

t ← extractfeatures
(
θinp, xt, cinp

)
26: xt ← xt − wmdf∇xtL(Ψt,Ψedit

t )) ▷ guidance step
27: end for
28: end if
29: xt−1 ← Updatestep

(
xt, θinp, cinp) ▷ single denoising step

30: end for

user given a single image, and the user may have to do mul-
tiple trials to obtain the desired depth value. To this end,
we create a simple user interface to easily obtain the depth
value for editing. We first apply the SAM [9] image seg-
mentation model on the background scene and lift the seg-
mentation map in 3D as point clouds using the input depth
map. Next, we visualize the segmented point cloud from
the Bird’s Eye View (BEV) as shown in Fig. 1. The BEV
projection is a simpler representation and makes it easier
to understand the placement of the scene objects. A user
can select a point in BEV projection where they want to
place the object, and the corresponding depth value will be
used for placement. Alternatively, the above process can
be automated to accept input placement prompts (’An ob-
ject between sofa and the wall’) by selecting a depth value



between the average depth of the sofa and the wall.

C. Ablations

We present ablations over crucial hyperparameters used in
the proposed approach.

C.1. Layered latent α - Comp vs FeatGLaC.

We ablate over the choice of the feature space to imple-
ment layered representation for effective depth-aware com-
positions. The ablation is provided in Fig. 2a). We ap-
ply layered latent α-compositing at some intermediate de-
noising timestep τ to compose the foreground and back-
ground scenes. For the remaining T − τ timestep, we let
the composed latent denoise freely to generate a natural-
looking composite image. However, applying Layered α-
compositing in the latent space at τ suffers from a trade-
off and leads to inferior scene composition results. Hav-
ing a higher τ value does not allow enough flexibility for
the edited latent to blend both regions. On the contrary,
having a lower τ value results in realistic blending but has
a significant loss in the identity of the foreground and the
background region. Our guidance method - FeatGLaC ad-
dresses this issue and achieves realistic blending while pre-
serving foreground and background regions.

C.2. Layered latent guidance vs FeatGLaC.

We perform an ablation over applying the guidance in lay-
ered latent space vs layered representation in U-Net feature
space in Fig. 2b). Guidance in layered latent space has
a tradeoff in the output generation, where applying guid-
ance for a small number of timesteps results in significant
identity change for the input scene, and guidance for more
steps results in unnatural blending in the output. In con-
trast, applying the guidance in the more expressive U-Net
feature representation results in natural scene compositing
(improved illumination effect on the foreground) along with
identity preservation.

C.3. Layered feature space editing vs Layered fea-
ture space guidance.

We also compare with a direct fusion of layered U-Net fea-
tures of the foreground and background image in Fig. 2c).
Manipulating the U-Net features is fragile and results in an
unnatural composition compared to manipulating the dif-
fusion latents. Our method uses the layers obtained from
DeGLaD in U-Net features to guide the diffusion latent
slowly, which is the most effective and keeps the diffusion
latent in the distribution of the original distribution, result-
ing in natural results.

C.4. Number of optimization steps.
We ablate over the number of optimization steps for guiding
the latent at each step of denoising in Fig. 3. Using a small
number of optimization steps results in significant identity
loss of the scene, and using a large number of optimization
steps can lead to artifacts in the scene’s appearance as it can
significantly alter the latent distribution. We use 5 optimiza-
tion steps for scene composition and 3 optimization steps
for object insertion, as the underlying inpainting model in
object insertion inherently preserves the scene background.

C.5. Guidance timestep for Object placement.
We ablate over the number of timesteps used for guidance
for object placement in Fig. 5. For object placement, we
first perform DeGLaD to get a layered representation, which
is used for latent α-compositing at intermediate timestep τ ,
and then feature guidance is used for the remaining T − τ
timesteps. Performing the fusion at later timesteps (T =
40) results in a ‘cut-paste’ appearance, resulting in unnatu-
ral compositing, and the object can get cropped due to an
inaccurate mask. On the contrary, fusing early (T = 20)
results in a strong prior from the inpainting model, which
generates the object at with an inaccurate occlusion.

C.6. Ablation over depth model.
Our method requires a depth map to obtain the layered rep-
resentation from DeGLaD for scene editing. We ablate over
different depth models to evaluate the robustness of our
framework. We predict depth maps from Marigold [7], Mi-
das [11] and Depth-Anything [15] model and perform ob-
ject placement in Fig. 4.

C.7. Hyperparameter ablation
We conduct a quantitative ablation study on key hyperpa-
rameters, including the number of timesteps used for guid-
ance and the weight assigned to the guidance loss. The re-
sults are presented in Tab. 1 and Tab. 2, respectively. To
evaluate the quality of generated images, we use LPIPS to
assess how well the appearance is preserved and KID (com-
puted on the COCO training dataset) to measure the real-
ism of the generated images. Additionally, we employ Im-
age Reward [13] metrics, a model trained to predict human
preference for an image given a specific prompt. This met-
ric evaluates how well the generated images align with the
prompt and estimates a human-assigned score, and we see
that the hyperparameter we chose visually also gives us the
best quantitative metrics.

D. Dataset details
D.1. Scene compositing.
We collect background images from the SSharmonization
dataset [5], and for foreground images, we take a variety
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Figure 1. User interface to provide object depth as input. Given a background image with its depth map and a 2D bounding box, we
segment the scene and lift the segmentation map to a 3D point cloud using the provided depth map. Next, we visualize the segmented
point cloud from Birds’ Eye View (BEV) for selecting the object depth. The BEV representation provides a convenient visualization for
selecting object depth, where the user can just select a point, and the corresponding depth value do will be used to place the object.

Table 1. Ablation over guidance timestep

Timestep LPIPS ↓ KID x 10-2 ↓ IR ↓
10 0.552 5.6 -0.557
20 0.416 4.8 0.065
30 0.305 4.9 0.72
38 0.247 5.4 0.836
40 0.238 5.4 0.833
49 0.231 5.4 0.758

Table 2. Ablation over guidance weight

Weightage LPIPS ↓ KID x 10-2 ↓ IR ↓
0.3 0.369 5.1 -0.27
0.6 0.272 5.3 0.73
1.0 0.247 5.4 0.836
1.2 0.245 5.3 0.807
1.5 0.251 5.4 0.819

of images with different lighting from Google images. Our
dataset consists of around 2844 images with 80 background
images and 36 foreground images. To get the foreground

mask, we manually do an annotation to find the best MPI
plane where we can get a meaningful foreground region that
can be composed with other background images. To get the
prompt for the background and foreground scene, we use
an off-the-shelf image captioning model [1] to obtain the
text prompts. And to get the combined scene prompt, we
use simple heuristics like ‘a photo of a {foreground object}
with {background scene prompt} in the background’.

D.2. Object Placement.
Our object placement evaluation dataset consists of 491
background-object image pairs. All of these are collected
from Google images, consisting of outdoor and indoor
scenes with high diversity in illumination and appearances.
We manually annotate the background image with a plausi-
ble object bounding box and a depth value where the object
can be placed meaningfully with proper occlusion. A user
can use a simple interface (discussed in Sec.2 and Fig. 1)
in the birds’ eye view of the scene to define the appropriate
depth for object placement. Here also, we use [1] for anno-
tating the background scene, which is needed for null text
inversion.
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Figure 2. a) Ablation with DeGLaD in latent representation. Fusing DeGLaD latents at the initial timestep leads to a significant loss in
the identity of the input scene, and fusion at a later timestep results in unnatural blending. Our FeatGLaC generates a realistic composite
image while preserving the identity of the background scene. b) Ablation with layered latent guidance. Instead of guiding the layered
feature, we apply the guidance on the layered latent representation. Guidance on latents does not have a significant change from the layered
latent fusion in a) and results in unnatural results. c) DeGLaD fusion in U-Net feature space. Applying DeGLaD fusion directly at U-Net
features instead of using layered feature guidance leads to significant changes in the latents, resulting in unnatural compositions. Our
approach to slowly update the latents with guidance keeps the latents in distribution and results in realistic compositing.
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Figure 3. Ablation over the number of optimization timesteps. Using a small number of optimization steps results in significant identity
loss of the scene, and using a large number of optimization steps can lead to artifacts in the scene’s appearance as it can significantly alter
the latent distribution. We use 5 optimization steps.
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Figure 4. Ablation over depth predictors for object placement.
Our approach is robust to the choice of monocular depth predictor
and results in consistent edits.

E. Implementation details
We perform ablation using different layers for guidance loss
calculation, and we observe that using the last two layers
of the u-Net seems to be effective for both of our applica-
tions. For the task of scene composition, instead of starting
from random noise, we start from the DDIM inversion of
the background image and then apply guidance from both
the background and the foreground regions. Starting from
the background layer, the latent results in the scene lighting
are inherited from the background scene. This is particu-
larly important in relighting applications, where we want
to illuminate the foreground region with the lighting from
the background. We give guidance from 0th timestep to
38, similar to giving guidance till 50th timestep, causes it
to look similar to cut and paste without any scene effects
such as illumination. We use 5 optimization steps per iter-
ation for scene compositions and 3 steps for object place-
ment. We use less number of steps for object placement
since the inpainting model already does well in preserv-
ing the appearance of the features outside of the bounding
box. Specifically, for object placement, we perform latent
α-comp at intermediate timestep τ with the layered mask
we obtain from DeGLaD and then perform feature guid-
ance for the rest of the timesteps to preserve the foreground.
There is a tradeoff between which timestep τ to use, and we
found τ = 30 works best in most of the cases. The time
taken to generate a single image for object placement is 60
sec, and for scene composition, it takes around 86 sec.

F. Additional Results
F.1. Additional Object Insertion Comparisons
We provide an additional comparison for object insertion
with a layered representation baseline, where we apply
DeGLaD in image space to obtain a layered representa-
tion and then place the object at the desired depth. How-
ever, the inserted object does not blend well with the back-
ground scene, as the layered representation in the image
space does not affect the color of the object placed. To
this end, we apply image harmonization [8] on top of the
image space α-comp output to generate realistic object in-
sertion. We present our results in Fig. 10, along with other

inpainting based approaches like IP-Adapter [16], Paint by
example [14], Anydoor [4] and few recent object inpainting
methods such as Brushnet [6], Mimic Brush [3], and Dipty-
chPrompting [12].

Method DINO-sim ↑ KID ↓ ∆ depth ↓ Clip-sim ↑
IP-Adapter [16] 0.244 5.3 9.366 27.81

DeGlad+Harmonization 0.576 4.7 2.985 68.5
LoMOE [] 0.206 5.1 6.49 48.46

Brushnet [6] 0.209 5.0 8.04 43.96
PbE [14] 0.273 4.9 6.733 60.12

Mimic Brush [3] 0.538 4.9 5.76 76.68
DiptychPrompting [12] 0.260 4.8 6.30 42.33

Anydoor [4] 0.507 4.9 3.176 83.23
Ours 0.545 4.8 2.989 84.86

Table 3. Depth-Aware object insertion additional comparison.
KID and ∆ depth are reported in x102 units.

F.2. Object Insertion + MasaCtrl [2]
Our object placement framework uses a pre-trained object
inpainting diffusion model [4] as the backbone. Hence,
the identity of the generated object is limited by the iden-
tity preservation capability of the base inpainting network.
However, we can improve upon the object identity by per-
forming a refinement step. Specifically, we use MasaC-
trl [2], with the reference object image and the edited im-
age. MasaCtrl injects the identity features in the generated
object region, resulting in improved identity. We present
the result in Fig. 7, where applying MasaCtrl improved the
object appearance and recovered some of the fine features
from the vase.

F.3. Object Insertion without Inpainting model
Object insertion can be performed without relying on an in-
painting model; however, using an inpainting model offers
additional advantages such as adjusting the object’s orien-
tation and generating realistic shadows. For object insertion
without inpainting, we can adopt a strategy similar to scene
composition. Specifically, we use a depth-conditioned dif-
fusion model to blend the object into the scene. Instead of
a general foreground region, we treat the object mask as the
foreground and the remaining scene as the background. The
diffusion model then generates a coherent image where the
object is naturally composed into the scene according to the
provided mask as shown in Fig. 6 and Fig.5c in main pa-
per. However, this approach requires the user to manually
and accurately align the object mask to the desired location
within the scene.

F.4. Lighting control in Scene Compositing
Our guidance method also allows us to control the lighting
change effect that happens during the compositing of two
different scenes. In Fig.9, we can see that increasing the
guidance weightage reduces the relighting effect and gener-
ates a composited image which looks closer to Image cut-
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Figure 7. Our method when combined with Masa-Ctrl [2], im-
proves identity of the inserted subject.

paste, and lowering the guidance weightage causes the fore-
ground region to follow the background scene lighting.

F.5. Scene compositing comparisons
We provide additional comparison results for scene com-
positing in Fig. 11. Our method is able to achieve realistic
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Figure 8. Qualitative comparison with Object 3DIT [10]

Guidance Scale=1

Figure 9. Our Guidance loss weightage can be used to control the
strength of relighting, unlike other feedforward-based relighting
methods [8].

scene compositing without any large-scale training.

F.6. More results
We present more results for both scene compositing and ob-
ject placement in Fig. 13 and Fig. 12.

G. User Study
Object placement. We compare our object insertion
method against three baselines: IP Adapter, Paint by Ex-
ample, and Anydoor. The evaluation focuses on three key
goals: scene realism, identity replication of the placed ob-
ject and background, and accurate placement at the intended
depth. To assess these goals, we carried out a user study
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Figure 10. Comparison of depth-aware object placement: Image + Harmonization results in an unnatural ‘cut-paste’ appearance for
the inserted object. Inpainting models, IP-adapter, and Paint by example struggle to insert objects with consistent identity given the amodal
bounding box. Anydoor achieves decent placement but has significant artifacts at the mask border (marked in red). Our method achieves
realistic object placement while preserving the object identity and scene consistency.
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Figure 11. Comparison for depth-aware scene compositing: DeGLaD + SDEdit and PAIR Diffusion generate unnatural compositions
and distort the identity of objects in some cases. Our approach realistically blends the two scenes in a depth-aware manner with consistent
intra-scene illumination.

on 15 edits across 15 images from our Object Placement
dataset. Each goal was evaluated separately by presenting
users with pairs of images and asking them to select the one

that better met the specific goal. A total of 45 randomized
image pairs were generated, with each pair comparing a re-
sult from our method to a corresponding result from a ran-



domly chosen baseline. These pairs were divided into three
groups of 15 pairs each, corresponding to the three goals.
The study involved 40 participants with varied experience
in image editing, who evaluated all 15 pairs for each goal,
resulting in 600 data points per goal and 1800 in total.
Scene compositing. We compare our approach against
DeGLaD image baseline + Harmonization, DeGLaD +
SDEdit, and Pair Diffusion, focusing on two goals: realism
and depth consistency. Using a subset of 15 edits across 15
images from our Scene Compositing dataset, we generated
40 image pairs, split evenly across the two goals. The same
40 users participated in this evaluation, generating 800 data
points per goal, for a total of 1600 data points.

H. Comparision with 3D editing method
We perform a qualitative comparison with Object3DIT, an
object-centric editing model trained on a large-scale, exten-
sively labeled synthetic dataset with 3D annotations. We
evaluate their method on the task of object placement and
observe that, due to the constraints of their training dataset,
it struggles with complex real-world objects and scenes (see
Fig. 8). In contrast, our method is training-free, leverages
a generic model, and works effectively with diverse objects
in real-world scenes.

I. Limitation
Our framework is based on pretrained diffusion models and
inherits the limitations and biases of the base model, such
as geometrically inconsistent shadows and perspectives in
some cases. Further, as we apply guidance at each de-
noising step, the proposed method is slower than genera-
tion from the base model. Our scene compositing doesn’t
follow actual light transport, but uses diffusion priors to
generate a scene which looks plausible in the given scene
lighting. For scene relighting, our approach relies on the
extent of the background region in the composed image; if
the background occupies a small number of pixels, then the
relighting will not be effective. This is closer to image har-
monization rather than accurate scene relighting. However,
our goal is to use depth-based layering and diffusion priors
to perform depth-aware edits without any fine-tuning. Us-
ing this representation, along with training for a single task,
can resolve some of these issues.

References
[1] Abdou. vit-swin-base-224-gpt2-image-captioning. In

https://huggingface.co/Abdou/vit-swin-base-224-gpt2-
image-captioning, 2022. 3

[2] Mingdeng Cao, Xintao Wang, Zhongang Qi, Ying Shan, Xi-
aohu Qie, and Yinqiang Zheng. Masactrl: Tuning-free mu-
tual self-attention control for consistent image synthesis and
editing. In Proceedings of the IEEE/CVF International Con-

ference on Computer Vision, pages 22560–22570, 2023. 1,
5, 6

[3] Xi Chen, Yutong Feng, Mengting Chen, Yiyang Wang, Shi-
long Zhang, Yu Liu, Yujun Shen, and Hengshuang Zhao.
Zero-shot image editing with reference imitation. Advances
in Neural Information Processing Systems, 37:84010–84032,
2024. 5

[4] Xi Chen, Lianghua Huang, Yu Liu, Yujun Shen, Deli Zhao,
and Hengshuang Zhao. Anydoor: Zero-shot object-level im-
age customization. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
6593–6602, 2024. 5

[5] Yifan Jiang, He Zhang, Jianming Zhang, Yilin Wang, Zhe
Lin, Kalyan Sunkavalli, Simon Chen, Sohrab Amirghodsi,
Sarah Kong, and Zhangyang Wang. Ssh: A self-supervised
framework for image harmonization. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 4832–4841, 2021. 2

[6] Xuan Ju, Xian Liu, Xintao Wang, Yuxuan Bian, Ying Shan,
and Qiang Xu. Brushnet: A plug-and-play image inpainting
model with decomposed dual-branch diffusion. In European
Conference on Computer Vision, pages 150–168. Springer,
2024. 5

[7] Bingxin Ke, Anton Obukhov, Shengyu Huang, Nando Met-
zger, Rodrigo Caye Daudt, and Konrad Schindler. Repurpos-
ing diffusion-based image generators for monocular depth
estimation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 9492–
9502, 2024. 2

[8] Zhanghan Ke, Chunyi Sun, Lei Zhu, Ke Xu, and Ryn-
son W.H. Lau. Harmonizer: Learning to perform white-box
image and video harmonization. In European Conference on
Computer Vision (ECCV), 2022. 5, 6

[9] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C Berg, Wan-Yen Lo, et al. Segment any-
thing. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 4015–4026, 2023. 1

[10] Oscar Michel, Anand Bhattad, Eli VanderBilt, Ranjay Kr-
ishna, Aniruddha Kembhavi, and Tanmay Gupta. Object
3dit: Language-guided 3d-aware image editing. Advances
in Neural Information Processing Systems, 36, 2024. 6
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Figure 12. a) Results for depth-aware object placement. b) Our method can also place the given object at multiple locations in a depth-
consistent manner
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Figure 13. a) Results for scene composition b) Given a foreground scene, we can compose it with a background scene with only the sky to
achieve realistic lighting of the foreground subject.
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Figure 14. Sample from user study. We asked three types of questions on Object Placement (left): Realism of the generated image, Identity
of object and background, Depth accuracy and two types of questions on Scene Composition (right): Realism and Depth Accuracy.
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