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1. Proof of Proposition 1

Proof. Let the SR model Hω∗ : Rd 7→ RD be ideally op-
timized, smooth, and continuously differentiable function.
Also, let the degeneration function D : Rd 7→ Rd be differ-
entiable. Given an input D(x0), we can apply a first-order
Taylor expansion of RHω∗ around the data x0:

RHω∗(D(x0)) = RHω∗(x0) (1)
+ JRHω∗ (x0)(D(x0)− x0)
+O(∥D(x0)− x0∥2),

where R : RD 7→ Rd is a linear transformation used for
image downsampling and JRHω∗ (x0) is the Jacobian matrix
of RHω∗(x0)) at x0. O(·) represents higher-order term.

By assumption, the SR model Hω∗ is perfectly optimized
by the log-posterior [30]. Then, the observation model in
SR satisfies:

RHω∗(x0) ≃ x0. (2)

Since the data manifold M is also smooth, we consider its
local structure around x0. In a manifold assumption [5], M
is locally linear and well approximated by its tangent space
Tx0M in a sufficiently small neighborhood of x0:

M∩B(x0, dr) = Tx0M∩B(x0, dr), Tx0M ≃ Rk, (3)

where k ≪ d. This implies that the Jacobian JRHω∗ (x0)
transforms inputs along directions within Tx0M while min-
imally distorting the local geometry of the manifold. Thus,
we approximate:

JRHω∗ (x0)(·) ≈ ΠTx0M(·). (4)

Substitute the approximation into the Taylor expansion:

RHω∗(D(x0)) = RHω∗(x0) (5)
+ΠTx0M(D(x0)− x0)

+O(∥D(x0)− x0∥2).

Substitute that RHω∗(x0) behaves a near-identity mapping
for x0 by our assumption. Then, we have:

RHω∗(D(x0)) ≈ ΠTx0M(D(x0)) +O(∥D(x0)− x0∥2).
(6)

Now, define the residual error δ between the downsampled
SR data and its projection onto the tangent space:

δ = ∥RHω∗(D(x0))−ΠTx0M(D(x0))∥F , (7)

where ∥ · ∥F is the Frobenius norm. The higher-order term
O(∥D(x0)− x0∥2) captures all higher-order deviations, we
can bound it by introducing a constant C > 0:

∥O(∥D(x0)− x0∥2)∥F ≤ C∥D(x0)− x0∥2. (8)

Thus, we have:

δ ≤ C∥D(x0)− x0∥2. (9)

Now, assuming that D(x0) remains sufficiently closer to x0,
i.e., D(x0) ∈ B(x0, ϵ), we set:

∥D(x0)− x0∥ < ϵ. (10)

Substituting this bound:

∥RHω∗(D(x0))−ΠTx0M(D(x0))∥F = δ ≤ Cϵ2. (11)

Since ϵ can be made arbitrarily small for sufficiently minor
degradation, such as adversarial attacks, we conclude δ → 0
as ϵ → 0. This completes the proof.

2. Incorporating Curvature into the Proof
In this section, we explicitly incorporate curvature effects
into the error bound by refining our previous analysis.

Given an input D(x0), we apply a second-order Taylor
expansion of RHω∗ around x0:

RHω∗(D(x0)) = RHω∗(x0) (12)
+ JRHω∗ (x0)(D(x0)− x0)

+
1

2
(D(x0)− x0)T HRHω∗ (x0)(D(x0)− x0)

+O(∥D(x0)− x0∥3),

where JRHω∗ (x0) is the Jacobian matrix capturing the first-
order derivatives and HRHω∗ (x0) is the Hessian matrix cap-
turing second-order curvature effects. O(∥D(x0) − x0∥3)
represents higher-order deviations.

From a differential geometry, the deviation between a
point D(x0) and its projection onto the tangent space Tx0M
is governed by the second fundamental form, SM(v, v).
This measures the curvature of M along unit direction v,
determining how much M deviates from its tangent space:

∥ΠM(D(x0))−ΠTx0M(D(x0))∥ (13)

≈ 1

2
∥D(x0)− x0∥2 sup

∥v∥=1

|SM(v, v)|.



Thus, we approximate the second-order term in the Taylor
expansion as:

(D(x0)− x0)
T HRHω∗ (x0)(D(x0)− x0) (14)

≈ sup
∥v∥=1

|SM(v, v)|∥D(x0)− x0∥2.

Now, substituting the curvature deviation bound into our er-
ror bound from Eq 9:

δ ≤ 1

2
∥D(x0)− x0∥2 sup

|v|=1

|SM(v, v)|+C ′∥D(x0)− x0∥3,

(15)
where C ′ > 0 is a constant that can bound higher-order
deviations. Since we assume D(x0) remains within a small
neighborhood, i.e., ∥D(x0)− x0∥ < ϵ, we substitute:

δ ≤ 1

2
ϵ2 sup

|v|=1

|SM(v, v)|+ C ′ϵ3. (16)

Since ϵ is sufficiently small, the higher-order term C ′ϵ3 di-
minishes faster than the quadratic term. Then, we have:

δ ≈ 1

2
ϵ2 sup

|v|=1

|SM(v, v)| as ϵ → 0. (17)

Thus, the error bound δ decreases at a rate of O(ϵ2), ensur-
ing that it vanishes as ϵ → 0.

3. Details of Experimental Environment
Evaluations of adversarial defenses are conducted by using
the PyTorch on adaptive white-box attacks (BPDA+EOT,
AutoAttack, PGD+EOT, and DiffAttack), a preprocessor-
blind attack (PGD), and a black-box attack (Square At-
tack). The experiments utilized two infrastructures: one
with 8 NVIDIA RTX 4090 GPUs for task evaluation and
another with 4 NVIDIA A100 GPUs for white-box attack
evaluation. Off-the-shelf DNN models were obtained from
torchvision, Hugging-Face, and timm. Adversarial
defense setups followed those of DiffPure [21] and Score-
Opt [36], incorporating SR models specific to each method.

We outline the package hubs overview as follows:
• torchvision: This package includes a wide range of

datasets, pre-trained DNN architectures, and typical im-
age transformations for computer vision tasks.

• Hugging-Face: An extensive hub offering ready-to-use
foundation models and neural network architectures.

• timm: A repository providing state-of-the-art computer
vision models, facilitating ImageNet training replication.

4. Implementation Details of PuriFlow
DNN models We describe the sources of the pre-trained
models used in our study:

• WRN-28-10 and WRN-70-16: Checkpoints sourced from
the official Robstbench leaderboard [8].

• ResNet-50: Sourced from torchvision model zoo.
• DeiT-S: Official pre-trained checkpoint from Hugging-

Face, released by Meta research.
• BEiT-L: Utilizes a pre-trained checkpoint from timm.
• VP-SDE: Adopted the 256×256 unconditional diffusion

model from OpenAI’s guided-diffusion library.
• EDM: Adopted the 32×32 unconditional diffusion model

from NVIDIA Lab for one-shot denoising.
• MDSR: Checkpoint sourced from Hugging-Face.
• EDSR: Checkpoint sourced from Hugging-Face.
• DRLN: Checkpoint sourced from Hugging-Face.
• ESRGAN: Sourced from the Real-ESRGAN custom-

reproduced library, with an official pre-trained checkpoint
from Real-ESRGAN [31].

Benchmarks on adversarial training We describe the
sources of pre-trained WRN-28-10, WRN-70-16, and
ResNet-50 checkpoints on adversarial training used for
standard and robust accuracy comparison:
• Checkpoints obtained from the official RobustBench

leaderboard [8].

Adversarial attacks The implementation sources for the
adversarial attacks used in our study:
• BPDA+EOT: Based on the official project [36], with N =
50 attack iterations and 15 EOT iterations, following [36].

• AutoAttack: Adopted from the official project [21] and
implemented according to the strategies in [21].

• PGD+EOT: Implemented from [19], with N = 200 at-
tack iterations, 20 EOT iterations, and a step size of
µ = 2/255, based on [19].

• DiffAttack: Derived from the official project [16].
• PGD: Sourced from the torchattacks library, with
N = 100 attack iterations and a step size of µ = 2/255,
following the adversarial attack outlined in Eq. 6.

• Square Attack: Sourced from the official AutoAttack
project [7], with a query limit of N = 5000.

Ablation study Details of pre-trained models and algo-
rithms used in our ablation studies:
• Wavelet (Denoising): Official implementation from the
scikit-learn package.

• TVM (Denoising): Official implementation from the
scikit-learn package.

• NL-means (Denoising): Official implementation from the
scikit-learn package.

• VE-SDE: Adopted the 256×256 unconditional diffusion
model from OpenAI’s guided-diffusion library.

For the use of the SR model, we required a scalable pre-
trained model supporting multiple upscaling ratios (e.g.,
×2, ×4, ×8) to evaluate its interaction with diffusion mod-
els. ESRGAN was the only option that met these criteria,
making it an unavoidable choice.



Algorithm 1 (PuriFlow) SR integrated with VP-SDE
Input: Image x
Given: Hω ; sθ∗ ; Fϕ; t′; {αt}t

′
t=1

x′ ←Hω(x) ▷ SR on unknown x ∈ {x0, xadv0 }
x′ ←R(x′) ▷ Downscale from RD to Rd

z ∼ N (0, Id)
xt′ ←

√
ᾱt′x′ +

√
1− ᾱt′z

x0 ← SDEINT(xt′ , f(·, t), g(t), w̄, t′, 0) ▷ until t′ is equal to 0
k∗ ← argmaxk∈[1,K]Fϕ(x0)

Output: Predicted label k∗

Algorithm 2 (PuriFlow) SR integrated with OSD
Input: Image x
Given: Hω ; sθ∗ ; Fϕ; t′ ; σ2

t′

x′ ←Hω(x) ▷ SR on unknown x ∈ {x0, xadv0 }
x′ ←R(x′) ▷ Downscale from RD to Rd

z ∼ N (0, Id)
xt′ ←

√
ᾱt′x′ +

√
1− ᾱt′z

x0 ← xt′ + σ2
t′ sθ∗ (xt′ , t′)

k∗ ← argmaxk∈[1,K]Fϕ(x0)
Output: Predicted label k∗

Algorithm 3 (PuriFlow) SR integrated with iterative OSD
Input: Image x
Given: Hω ; sθ∗ ; Fϕ; t′; σ2

t′ ; M
x′ ←Hω(x) ▷ SR on unknown x ∈ {x0, xadv0 }
x′ ←R(x′) ▷ Downscale from RD to Rd

x0 ← x′
for i = M to 1 do ▷ M -th optimization iterations

z1, z2 ∼ N (0, Id)
z ∼ N (0, Id)
xi
t′ ← xi + σt′z1

xc
t′ ← x′ + σt′z2
g ← ∇xi [||xit′ + σ2

t′ sθ∗ (xit′ , t
′) − xi||22 + ||xi − x′ +

σ2
t′ (sθ∗ (x

i
t′ , t

′)− sθ∗ (xct′ , t
′))||22]

xi−1 ← xi − η · g
end for
k∗ ← argmaxk∈[1,K]Fϕ(x0)

Output: Predicted label k∗

Dataset We evaluate PuriFlow against previous adversar-
ial defense methods using the ImageNet-1k dataset [9],
which contains 50k validation images, and CIFAR-10, com-
prising 10k test images. For robust accuracy, following
prior research [3, 20, 21, 36], we use a subset of 512 valida-
tion and test images from both datasets. Standard accuracy
is measured on the full dataset, which is also used to evalu-
ate defenses against the pre-processor blind attack (PGD).

5. PuriFlow Process in Algorithm

We present PuriFlow, an adversarial purification method
that combines an SR model with diffusion models based on
VP-SDE [21] and iterative OSD [36]. The drift coefficients

Type Method Standard (%) Robust (%)
WRN-28-10 95.63 0.00

AT
Pang et al. [22] 88.62 64.95
Gowal et al. [11] 88.54 65.93
Gowal et al. [12] 87.51 66.01

AP

Wu et al. [33] 89.16 70.07
Nie et al. [21] 89.44 70.64
Bai et al. [1] 91.41 82.81
PuriFlow([21]) 90.06 87.10

WRN-70-16 95.79 0.00

AT
Gowal et al. [11] 85.29 68.66
Gowal et al. [12] 88.74 69.03
Rebuffi et al. [27] 88.54 69.97

AP

Yoon et al. [34] 86.76 60.86
Nie et al. [21] 90.07 71.29
Wang et al. [32] 93.25 70.69
Bai et al. [1] 92.97 82.81
PuriFlow([21]) 90.21 86.91

Table 1. Evaluation comparing adversarial training (AT) and pu-
rification (AP) methods against AutoAttack with ℓ∞-perturbations
ϵ = 8/255 on CIFAR-10. AP methods are set to time t′ = 100.

for the reverse-time SDE in VP-SDE are defined as:

f(xt, t) = −1

2
(1− αt)

(
xt + 2sθ∗(xt, t)

)
, (18)

g(t) =
√
1− αt, (19)

where αt = 1 − βt. SR-combined VP-SDE process is de-
scribed in Algorithm 1. Additionally, in this supplementary
material, we evaluate the certified robustness of the OSD
method, following [4].

SR-integrated One-Shot Denoisor (OSD). The one-shot
denoiser, a special case of the reverse diffusion process, de-
couples the temporal sequences of the reverse-time SDE
and is applied either once or iteratively with a fixed time
step t′. For example, SR can replace the original reverse-
time SDE in a one-shot scheme, as shown in Algorithm 2.
Furthermore, SR can be incorporated into one-shot denois-
ing optimization methods, as described in Algorithm 3 [36].

6. Supplemental Experiments
This section provides supplemental experimental results
that are not surrounded in the manuscript.

AutoAttack Table 1 demonstrates that PuriFlow achieves
robust accuracy gains of 16.46% for WRN-28-10 and
16.62% for WRN-70-16 over a diffusion-only approach
on CIFAR-10. Furthermore, it surpasses guided-diffusion
purification [1] by 4.29% and 4.1% for WRN-28-10 and
WRN-70-16, respectively. As demonstrated in Table 9 of
the manuscript, PuriFlow shows more efficiency, particu-
larly considering the overhead noted in the study [1].
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(a) Impact of SR compared to diffusion with increments of t′.
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(b) Synergistic effect in feature restoration of SR combined with diffusion.
Diffusion and SR+Diffusion use the same diffusion time t′ = 90.

Figure 1. Content distance from the ground truth for each im-
age type, measured across all convolutional layers of VGG-19.
Measurements follow [10], using the same experimental settings
as Figure 5 in the manuscript.

Method Type Standard (%) Robust (%)
Nearest-Neighbor Interpolation 70.23 66.57
Bicubic Interpolation 72.41 68.10
Bilinear Interpolation 72.97 68.75

Table 2. Evaluation of PuriFlow under a preprocessor-blind attack,
a PGD attack targeting ResNet-50 within ℓ∞-norm ball of radius
ϵ = 4/255 on the ImageNet-1k. PuriFlow uses t′ = 90 and three
different interpolation methods to down-scale SR images.

6.1. Visualization of Real-Valued Content Distance
This section visualizes the content distance values, as rep-
resented by the normalized illustration in Figure 4 of the
manuscript. Figure 1 displays the content distances across
all convolutional layers in VGG-19, following [10]. The
distances vary significantly across layers, with initial lay-
ers (e.g., Conv1 1 and Conv1 2) showing negligibly small
values. Figure 1a demonstrates that SR outperforms diffu-
sion for varied times in early layers. Furthermore, Figure 1b
shows that combining SR with diffusion synergistically re-
duces the content distance by compensating for diffusion’s
limited effectiveness in the early layers. This, in turn, en-
hances its impact in the later layers.

6.2. Additional Ablation Study
Impact of down-scaling criteria to SR image. In this
study, we conduct a case study to assess the efficacy of
different interpolation methods for downscaling SR images
in the PuriFlow process. Our default choice, ESRGAN×2,
generates the SR images. We evaluate common interpola-

Method SR model Ratio Standard (%) Robust (%)
WRN-70-16 95.79 0.00
Nie et al. [21] - - 90.07 71.29
PuriFlow([21]) MDSR ×2 90.21 86.91
PuriFlow([21]) LDM-SR ×4 87.21 86.32

Table 3. Evaluation of performance on CIFAR-10 using diffusion-
based SR (LDM-SR [28]) integrated with diffusion, under a white-
box attack, AutoAttack. All diffusion times are set to t′ = 100,
and LDM’s time is set to 5. Note that LDM-SR is officially avail-
able as a ×4 model from Hugging-Face.

Reverse time (t̃′)
Forward time t′ = 90

t̃′ = 50 t̃′ = 70 t̃′ = 90 t̃′ = 110
Standard (%) 56.36% 62.78% 72.97% 66.72%
Robust (%) 51.83% 59.16% 68.75% 63.75%

Table 4. Evalution of PuriFlow with decoupling the forward and
reverse diffusion times using the default diffusion model, VP-
SDE. This analysis uses a PGD attack targeting ResNet-50 within
an ℓ∞-norm ball of a radius ϵ = 4/255 on ImageNet-1k. Ac-
cording to varying reverse diffusion time t̃′, the noise schedule
functions of f(·, t) and g(t) are adapted to the set of {αt}t̃

′
t=1.

tion techniques, including Nearest-Neighbor and Bicubic,
in addition to our default method, Bilinear. As shown in
Table 2, the results demonstrate that Bilinear interpolation
surpasses the other two methods in standard and robust ac-
curacy. Figure 1 further reveals that all examined downscal-
ing techniques contribute to decreasing the cross-entropy of
adversarial examples before their diffusion processes. How-
ever, it is noteworthy that Nearest-Neighbor interpolation
exhibits some inconsistencies in reducing cross-entropy in
conjunction with the diffusion process.

Impact of using diffusion-based SR. In this study, we re-
place conventional SR models with a recent diffusion-based
SR method for further evaluation, using AutoAttack on a
WRN-70-16 classifier. Since LDM-SR is restricted to a ×4
resolution, it shows performance differences compared to
the ×2 MDSR, which we identified as the optimal choice
in this study. Purification with LDM-SR achieves a robust
accuracy improvement of 15.03%, similar to existing SR.
However, its standard accuracy is 3% lower than MDSR
due to increased uncertainty from the higher resolution ra-
tio. Nevertheless, the results confirm the effectiveness of
diffusion-based purification in enhancing robust accuracy,
even though we employ a different type of SR.

Separating forward and reverse diffusion times in Puri-
Flow. In our study, as outlined in Algorithm 1, PuriFlow is
configured with an equal forward and reverse diffusion time
t′, used during the diffusion of down-scaled SR images. Ta-
ble 4 explores the performances when diverging the reverse



Reverse interval (d) Forward time t′ = 90
d = 1 d = 5 d = 15 d = 30

Standard (%) 73.39% 54.04% 53.25% 52.53%
Robust (%) 66.51% 49.60% 48.89% 48.24%

Table 5. Evaluation of PuriFlow with varying intervals in the re-
verse process, using VE-SDE as the diffusion model. This study
involves a PGD attack targeting ResNet-50 within an ℓ∞-norm
ball of radius ϵ = 4/255 on ImageNet-1k. According to different
interval values d, the influenced repetition frequency of the reverse
noise schedule function frev(·, t) is determined as t′/d.

diffusion time t̃′ ∈ {50, 70, 110} from the set forward dif-
fusion time of t′ = 90, contrasting it with our standard ap-
proach of a consistent reverse diffusion time t̃′ = t′ = 90.
When t̃′ = t′ = 90, both forward and reverse diffusion pro-
cesses follow the same noise schedule defined by {αt}90t=1.
In scenarios with different t̃′ values, the reverse diffusion
employs {αt}50t=1, {αt}70t=1, and {αt}110t=1, while maintain-
ing the forward diffusion noise schedule at {αt}90t=1. Our
findings reveal that aligning the forward and reverse diffu-
sion times (t̃′ = t′ = 90) offers superior standard and ro-
bust accuracy compared to shorter reverse diffusion times
(t̃′ of 50 and 70). Additionally, this aligned approach sur-
passes the performance of a longer reverse diffusion time
(t̃′ of 110) in both standard and robust accuracy metrics by
6.25% and 5.00%, respectively. This result demonstrates
the effectiveness of maintaining consistent diffusion times
t′ = t̃′ in both forward and reverse processes to maximize
purification effects with PuriFlow.

Adopting intervals in reverse diffusion time of VE-SDE.
As detailed in Table 6, our manuscript assesses VE-SDE, a
model shifting VP-SDE through non-Markovian diffusion
processes. These non-Markovian processes enable deter-
ministic generative models capable of producing samples
more rapidly. This speed enhancement is achieved by ad-
justing the number of reverse diffusion steps based on a time
interval d. Table 5 demonstrates the results when employ-
ing different interval values d ∈ {5, 15, 30}, compared to
our default choice of d = 1. With d = 1, the reverse diffu-
sion process is conducted in the same steps as the forward
diffusion time t′ = 90. For other values of d, reverse dif-
fusion occurs 16, 6, and 3 times, respectively, aligned with
t′/d. The observations indicate that our selected interval
d = 1 shows superior standard and robust accuracy perfor-
mances over other interval utilization. Remarkably, as the
interval d increases, there is a noticeable, gradual decrease
in performance across both metrics. This result suggests
the advantage of using VE-SDE without intervals in purifi-
cation, emphasizing its preserving accuracy.

Impact of diffusion time t′. Figure 2 illustrates how Pu-
riFlow’s standard and robust accuracy and wall time vary

ESRGAN×2 ESRGAN×4
Diffusion time (t′) 10 30 50 10 30 50
Standard (%) 74.00 74.01 73.68 73.46 73.28 73.05
Robust (%) 49.92 61.42 65.68 46.41 59.83 64.57

Table 6. Effect of upscaling ratio and diffusion time (t′) on stan-
dard and robust accuracy, following the settings in Table 6.

SR model MDSR ESRGAN
BPDA+EOT (s/it.) 4.85 4.96
PGD+EOT (s/it.) 32.45 32.95
AutoAttack (s/it.) 433.71 444.73
DiffAttack (s/it.) 451.30 460.40

Table 7. Time required for an iteration of white-box attacks for a
single image, using two SR models, VP-SDE [21] (t′ = 100), and
WRN-70-16 on CIFAR-10.

with diffusion time t′. Figure 2a shows the impact of ro-
bust accuracy peaks at t′ = 300 and significantly drops at
t′ = 150 when SR is equipped with a one-shot denoisor.
Using ResNet-50 and DeiT-S, PuriFlow, which integrates
SR with solving SDEs, significantly improves robust accu-
racy up to t′ = 110, then plateaus at t′ = 130 and t′ = 150,
while standard accuracy decreases slightly by about 3% as
t′ increases. Despite this, PuriFlow at t′ = 150 main-
tains higher standard accuracy (70.96% for ResNet-50 and
74.93% for DeiT-S) compared to Nie et al. [21] (67.79%
and 73.63%), indicating the effectiveness of SR prepro-
cessing in mitigating negative effects of extended diffusion
times. Furthermore, wall time (s/img) increases proportion-
ally with t′, irrespective of the classifier used. Efficient pro-
cessing times of approximately 1.37 seconds per image at
t′ = 10 for preprocessor-blind attacks and 16 seconds per
image at t′ = 130 for AutoAttack were achieved, which
is relatively efficient compared to 19 seconds per image at
t′ = 150 for Nie et al. [21]. Note that this purification
overhead originates from the diffusion process, as shown in
Table 10 of the manuscript.

Diffusion time and SR factors Table 6 shows that while
SR is effective, its synergy with diffusion seems hindered as
the SR ratio increases. This is possibly due to an increase
in unknown pixels for the inverse problem, which may lead
to changes in information at a higher SR ratio.

6.3. White-Box Attack Overhead on PuriFlow
Table 7 presents the time consumed per attack iteration
when executing white-box attacks on the entire PuriFlow
pipeline. The overhead is primarily accumulated from the
dependency on the number of diffusion times t′ per attack
iteration. BPDA+EOT and PGD+EOT exhibit relatively
shorter attack times than AutoAttack and DiffAttack, as
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Figure 2. (a) Impact of diffusion time t′ in SR+iOSD under a white-box attack, BPDA+EOT, within ℓ∞-norm ball of radius ϵ = 8/255
on CIFAR-10, and the same impact in SR+Diffusion under a preprocessor-blind attack. Accuracy and wall time for PGD attacks targeting
(b),(d) ResNet-50 and (c),(e) DeiT-S within ℓ∞-norm ball of radius ϵ = 4/255 on the ImageNet-1k.

Method OTS? Certified accuracy at radius ϵ
0.5 1.0 1.5 2.0 3.0

RS [6] ✗ 49.0 37.0 29.0 19.0 12.0
SmoothAdv [29] ✗ 56.0 43.0 37.0 27.0 20.0
Consistency [14] ✗ 50.0 44.0 34.0 24.0 17.0
MACER [35] ✗ 57.0 43.0 31.0 25.0 14.0
Boosting [13] ✗ 57.0 44.6 38.4 28.6 21.2
SmoothMix [15] ✗ 50.0 43.0 38.0 26.0 20.0
Lee [18] ✓ 41.0 24.0 11.0 - -
DDS [4] ✓ 71.1 54.3 38.1 29.5 13.1
PuriFlow ([4]) ✓ 72.1 59.7 45.0 33.6 21.3

Table 8. Comparative evaluation of various models on ImageNet-
1k, based on the results by DDS[4]. The “OTS?” indicates whether
solely off-the-shelf models were used in the defense methods.
Symbols ✗ and ✓ distinguish between the techniques that de-
velop custom-develop models for randomized smoothing defenses
and those using pre-trained score functions for one-shot denois-
ing. Each method was tested under three different noise levels
σ ∈ {0.25, 0.5, 1.0}, within an ℓ2-norm ball of radius ϵ. The best
accuracies reported for each noise level are compared.

Noise level Certified accuracy at radius ϵ
0.0 0.5 1.0 1.5 2.0 3.0

σ = 0.25 80.5 72.1 00.0 00.0 00.0 00.0
σ = 0.50 76.8 69.0 59.7 45.0 00.0 00.0
σ = 1.00 63.6 56.1 49.0 42.0 33.6 21.3

Table 9. Certified accuracy on PuriFlow on the ImageNet-1k
dataset in three noise levels σ, within ℓ2-norm ball of radius
ϵ ∈ {0.0, 0.5, 1.0, 1.5, 2.0, 3.0}, followed by Carlini et al. [4].

the latter ensemble multiple attacks increase their execution
time. While BPDA+EOT and PGD+EOT are highly effi-
cient and effective attack methods from the attackers’ per-
spective, PuriFlow demonstrates strong test-time defense
capabilities by integrating efficient SR models. Notably, the
effectiveness of PuriFlow in defending against AutoAttack
and DiffAttack, which have significant overheads, empha-
sizes the dramatic efficiency of its SR-based approach.
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Figure 3. Certified accuracy of PuriFlow against randomized per-
turbations within an ℓ2-norm ball, considering three different lev-
els of Gaussian noise (σ). The bounds are calculated using a sam-
ple of 1,000 images from the ImageNet-1k dataset.

6.4. Certified Robustness

One direction to obtain a certified model that provably re-
sists adversarial attacks is to develop Gaussian smoothed
models [6]. These models denoted as F̂ϕ(x) are de-
signed to be robust against noise-corrupted images F̂ϕ(x) =
Eδ[Fϕ(x + δ)] where δ ∼ N (0, σ2I) and δ ∈ Rd. Puri-
Flow, which requires no additional training, seamlessly in-
tegrates into a dual-phase framework, consists of an off-the-
shelf model that purifies noise-corrupted images x+δ and a
pre-trained classifier for predictions of the denoised images.

Table 8 demonstrates the significance of PuriFlow, as
summarized in Algorithm 2 in constructing a Gaussian
smoothed model, utilizing a pre-trained BEiT-L as the clas-
sifier in conjunction with a single step OSD [4]. PuriFlow
achieves a promising level of certified robustness by lever-
aging solely off-the-shelf components for super-resolution,
diffusion (one-shot denoiser), and classification. To ensure
a fair comparison with DDS [4], our evaluation adheres to
the experimental protocols specified by DDS for selecting
diffusion time t′, with σ2 calculated as σ2 = (1− αt′)/αt′

and employing the 1k images, an image per class from the
ImageNet-1k validation set.

Our model, which combines BEiT-L and SR-integrated



G
ro

u
n

d

tr
u

th

A
d
v
e

rs
a
ri

a
l

e
x
a
m

p
le

D
if
fu

s
io

n
S

R
+

D
if
fu

s
io

n

(O
u
rs

)

G
ro

u
n

d

tr
u

th

A
d
v
e

rs
a
ri

a
l

e
x
a
m

p
le

D
if
fu

s
io

n
S

R
+

D
if
fu

s
io

n

(O
u
rs

)

Figure 4. Visualization of adversarial example purification using PGD attack on ResNet-50 with ℓ∞-norm ball radius ϵ = 16/255 for the
ImageNet-1k dataset. Original images are framed in green. Images within red boxes indicate incorrect predictions, while those in blue
boxes show correct classifications. The diffusion time is set to t′ = 30 for both Diffusion [21] and SR+Diffusion (Ours).

OSD, demonstrates its effectiveness as evidenced in Fig-
ure 3 and Table 9. Table 9 details the certified Top-1 ac-
curacy at each specified radius, while Figure 3 illustrates
the variations in certified accuracy to different sigma values

as the radius changes. We evaluate the robustness of this
model using randomized smoothed images across a range
from ϵ = 0.5 to ϵ = 3.0, with ℓ2-perturbations.



7. Visualization of Purified Adversarial Image
This section presents a case study that qualitatively assesses
the efficacy of our purification process on adversarial ex-
amples. Through the visualization in Figure 4, we demon-
strate the distinct advantages of PuriFlow over Nie et al.
[21]. Our observations reveal that Nie et al. [21] struggles
to effectively remove adversarial noise when using a diffu-
sion time of t′ = 30 under a strong adversarial attack. In
stark contrast, PuriFlow, even with the same diffusion time
of t′ = 30, demonstrates remarkable success in denoising
and restoring images to a state similar to their original form,
leading to accurate predictions. We conjecture that content
restoration contributes to stable convergence during the de-
noising steps in the diffusion process.

8. Limitations
Our approach uses SR models to restore and align adversar-
ial examples with their ground truth in diffusion-based pu-
rification. However, this synergy does not fully mitigate the
overhead associated with diffusion time, which remains a
dominant factor in the purification process. Enhancing this
aspect could lead to significant improvements in robustness
and practical applicability. In future work, we will focus on
accelerating diffusion techniques [17] and integrating SR
models to develop a more effective and efficient test-time
defense.

9. Societal Impact
Adversarial purification can significantly enhance the secu-
rity of DNNs in safety-critical systems, such as autonomous
vehicles, healthcare diagnostics [2], and security surveil-
lance. By effectively neutralizing adversarial attacks, these
systems become more reliable and trustworthy. With im-
proved defenses against adversarial attacks, the trustwor-
thiness of AI systems increases in various sectors [23–26].
This can lead to broader acceptance and integration of AI
technologies in everyday life. Nevertheless, while adversar-
ial purification strengthens defenses, the underlying knowl-
edge could be used maliciously. By understanding how pu-
rification methods work, adversaries might develop more
sophisticated attacks. That is, smaller organizations or enti-
ties with fewer resources may not have access to advanced
adversarial purification techniques, leading to a disparity in
the security and reliability of AI systems. In conclusion,
while adversarial purification presents a significant step for-
ward in enhancing the security and reliability of AI systems,
it also presents challenges that require careful consideration
and responsible handling to ensure its overwhelmingly pos-
itive impact on society.
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