Generative Active Learning for Long-tail Trajectory Prediction via Controllable
Diffusion Model

Supplementary Material

1. Long-tail definition

Tail agents are defined dynamically by the current model
error, so their characteristics shift during training. Nonethe-
less, we analyzed tails of the initial model (Fig. 1): tail
(orange) vs. head (blue) histograms for agent density, A-
heading, speed, and a speed + heading composite. Den-
sity barely differs, but tails show larger headings/speeds; the
composite confirms this. However, many tail cases do not
exhibit these extremes (red circled), implying the presence
of semantic uniqueness. Leveraging such hard-to-explain
tails during training is a key strength of our framework.

wwwwww

: Mge!l'l"Heaﬂ!ﬂ'l"l|l;d,

Mk J'Jl'heaﬂ.lﬂ'g"'!\!g i

[0 Non Topl%
3 Topl%
Figure 1. Distribution comparison on the GT trajectories of tail and head agents.

2. Random time window shift

hist fut hist fut hist fut

| | I

Generated scene

Shifted scene

i~
< 4
/4
Scene input Generated & shifted scene

Figure 2. The left side shows input scene, and the right side shows
generated and shifted scene. Blue line indicates historical trajec-
tory while green line indicates future trajectory.

The random time window shift technique applies a ran-
dom shift to the current time ¢ = 0 in the trajectory of all

agents within a scene. The shift, denoted as §t, is sampled
from an exponential distribution with a scale parameter of
0.5, ensuring smaller values are sampled more frequently.
To normalize the shift, Jt is scaled to a range of [0, 1] by

applying: 5

ot+1

The normalized shift is then multiplied by half the future
time length T'/2 to calculate the final shift value. Figure 2
illustrates the results of scenario generation after applying
the random time window shift. Notably, a portion of the
generated scenario is utilized as input, demonstrating how
shifted trajectories integrate into the process.

6tnorm =

3. Metric definition
3.1. minADEg and minFDE(

The metrics minADEg (minimum Average Displacement
Error) and minFDEg (minimum Final Displacement Error)
are widely used to evaluate the accuracy of trajectory pre-
diction models in a multimodal context.

minADEg: Measures the average displacement error across
the trajectory for the most accurate prediction among six
modes.

minFDEg;: Measures the displacement error at the final
time step for the most accurate prediction among six modes.
Mathematically, they are defined as follows:

T
. I | o (F)
minADEg = Fg%lnﬁ T t_zl Yi -yt (1)
inFDEg — mi HA(F)— H 2
min 6 Fgll,l.lf.li’6 Yr yr) 2
Where:
y§F> : Predicted position at time t for the F-th mode.

y+ : Ground truth position at time t .
T : Total number of time steps in the trajectory.

3.2. Difference between FPR and VaR

Fig. 4 illustrates the differences between the FPR and VaR
metrics discussed in the main text. Both metrics evaluate
the quality of the model’s error distribution. However, the
distinction lies in their definitions: FPR measures the pro-
portion of agents whose prediction error exceeds a prede-
fined threshold, while VaR quantifies the prediction error
corresponding to the 1-av quantile of the error distribution.

S
i(ﬁh

@
!

L

\

)

I
|

Figure 3. Visualization of the agent type classification results. ood, relevant, normal agents are highlighted with red, turquoise, and gray
bounding boxes, respectively. This figure illustrates that multiple OOD agents can exist in a single scene. Relevant agents are effectively

identified as those with the highest interaction at future timestamps.

occurrence
occurrence

FPR

th

error error
th VaR,

Figure 4. Illustration of the FPR and VaR metrics with respect to
the error distribution. The x-axis represents the prediction error,
specifically minADEg, and the y-axis indicates the count (occur-
rence) of agents within each error bin. Both metrics provide dis-
tinct yet complementary perspectives for assessing the quality of
the error distribution.

These two metrics provide complementary and intuitive cri-
teria for assessing the quality of the error distribution.

4. Implementation details

We utilize 4 x A6000 GPUs for model training. Due to
modifications in the training procedure, we employ Pytorch
Lightning Fabric [2]. Our predictor retains the original QC-
Net [6] architecture without any structural changes. The
hyperparameters used for training align with those in the
original paper. For the LCSim model [5], the encoder archi-
tecture remains unchanged from the original paper. How-
ever, we introduce a future-future attention module to the
denoiser to enhance its functionality, inspired by [3] and
[4]. This module uses a MessagePassing layer, akin to other
attention modules within the denoiser. Its purpose is to cal-
culate attention across generated agents’ trajectories, ensur-
ing inter-agent relationship consideration and scenario plau-

sibility. For identifying relevant agents via attention scores,
we utilize scores from the future-future attention module as
described in the main text. The attention score from the last
denoising step in the entire reverse process is employed.

For generative active learning, we set the sampling
weight decay to 0.7 and the sampling weight clipping min-
imum value to 0.5. The maximum train set size is set to
twice the size of the original train set. If the train set ex-
ceeds this size, the earliest generated data is excluded to
maintain the limit. For the random time window shift, we
use an exponential distribution with a scale parameter of 0.5
to sample the shift. The sampled value is normalized to the
range [0, 1] and then multiplied by 40 to compute the final
shift value.

5. Definition of traffic rules

No-Off-Road Constraint To ensure that generated tra-
jectories remain within road boundaries, we define the no-
off-road objective as a penalty function that discourages de-
viations from the drivable area. Let y" = {p}}as.1, de-
note the future trajectory of agent n, where p} = (', y")
represents the agent’s position at time ¢ . The objective is
formulated as follows:

Z HlaX(O, droad(p?) - 6off>7 3)
t:At:Tf

Cno—off—road (yn) =

where droaq(p}') represents the Euclidean distance be-
tween pj’, and the closest drivable area, and eqf is a tol-
erance threshold. The function penalizes points that lie out-
side the road region, enforcing adherence to traffic lanes.

Repeller Constraint To prevent collisions between gen-
erated trajectories, we introduce a repeller objective that en-
forces a minimum safe distance between agents. For a pair
of agents n and m , we define the repulsion function:

Crepeller(yna ym) = Z maX(O, €rep — ‘ |p? _p;n| Dv (4)
t:At:Tf

where dyy;, is the minimum safety distance threshold, and
|lp} — pt™|| denotes the Euclidean distance between agents
n and m at time ¢ . This objective imposes a penalty when
the inter-agent distance falls below e, , encouraging safer,
collision-free trajectories.

Integration of gradient guidance During inference,
these objectives are incorporated into the gradient-based
guidance framework. The total guidance function is given
by the sum of two guidance terms. The gradient is then used
to adjust the predicted mean at each denoising step, ensur-
ing that the generated trajectories comply with traffic rules.

6. Agent type classification results

We illustrate the classification results of our proposed
method, where agents are categorized into three types: ood
(out-of-distribution), relevant, and normal. As shown in
Fig. 3, ood agents are represented with red bounding boxes,
relevant agents with turquoise bounding boxes, and normal
agents with gray bounding boxes. The blue arrows indicate
the generated scenarios. As depicted in the figure, multiple
ood agents can exist within a single scene. Relevant agents
are accurately classified as those with the highest interaction
at future timestamps. This demonstrates the effectiveness of
the proposed method in capturing inter-agent dynamics and
interactions.

(1) Stability: We follow the LCSim decoder and add a
future-future attention module that computes attention over
the to-be-generated future, not past interactions. Therefore,
our method adapts to behavior changes during scene gen-
eration, and Fig. 3 shows stable classification results across
generated scenes.

(2) Threshold: We use a threshold of 1/N, where N is
the number of adjacent agents. From our observations, at-
tention scores for non-relevant (“other”) agents are nearly
zero, while relevant agents tend to evenly share the attention
(approximately 1/n, where n is the number of true relevant
agents). Since 1/n is much greater than 1/N, this threshold
effectively separates relevant agents, and we have found the
classification to be robust under this rule.

Table 1. Additional experimental results on nuScenes dataset with
different backbones and evaluation metrics. In this experiment,
we further investigate the performance of different training meth-
ods on an additional dataset (nuScenes), an additional backbone
(MTR), and additional evaluation metrics (Top 5%, VaRg7).

. . Overall
Long-tail metrics .
metric
Method = % VaRyy FPR; | minFDEg
Vanilla 12.59 9.60 4.11% 1.691
< | resampling | 10.39 891 331% 1.889
% cRT 10.96 9.02 3.33% 1.730
O | contrastive 10.33 874 321% 1.864
GALTraj 8.53 7.04 2.08% 1.513
Method TOp 5% VaRgr FPR1g mll’lFDE(;
Vanilla 6.54 725 0.93% 2.174
" resampling 5.34 572 0.60% 2.192
& | cRT 5.53 6.01 0.64% 2.140
= contrastive 4.96 554 0.53% 2.181
GALTraj 4.11 470 0.48% 2.098

7. Additional experiments: backbone, metric
and dataset

To further validate the robustness and generalization ca-
pability of our approach, we conducted additional experi-
ments on a new dataset (nuScenes), an additional backbone
(MTR), and new evaluation metrics (Top 5% and VaRgr).
For MTR, we use the github repositories of UniTraj [1].
The results of these experiments are summarized in Table 1.
‘We extended our evaluation to nuScenes, a dataset with dif-
ferent distribution characteristics and challenges. Addition-
ally, we introduced MTR as an alternative backbone to ex-
amine the effect of different architectures on long-tail per-
formance. Furthermore, we incorporated new evaluation
criteria: 5% (Top 5%), 3%(VaRg7), and FPR ¢ to capture a
broader range of failure cases and assess the overall stability
of trajectory prediction models under long-tail scenarios.

The results in Table | demonstrate that GALTraj con-
sistently achieves the best performance across all settings,
outperforming all baselines under both QCNet and MTR
backbones. Notably, when using QCNet, GALTraj reduces
the FPRj5 error rate by over 20% compared to other meth-
ods, achieving the lowest failure rate of 2.08%. Similarly,
under the MTR backbone, GALTraj maintains the lowest
prediction error, indicating strong generalization capabili-
ties. While Resampling, cRT, and Contrastive learning tech-
niques outperform the baseline (Vanilla), they still fall short
of GALTraj’s superior performance. Among the baselines,
Contrastive learning performs the best, yet it remains over
10% worse than GALTraj in long-tail scenarios. This high-
lights the effectiveness of GALTraj’s specialized design in
handling imbalanced trajectory distributions.

Figure 5. Additional visualization for the main experiment. In each image pairs, the left one indicates prediction results from the vanilla
method, and the right one shows prediction results from the proposed method. Red lines represent multi-modal predictions, blue lines
indicate the history, green lines show the ground truth future motion, and gray lines represent lane centerlines. Bright, thick lines highlight

the trajectories of out-of-distribution (0od) agents.

8. Dataset details

We conduct experiments on three datasets: Waymo Open
Motion Dataset (WOMD), Argoverse 2, and nuScenes. For
WOMD and Argoverse 2, we adopt the temporal configu-
ration defined in their respective benchmarks without mod-
ification. Specifically, in WOMD, the history length, future
length, and time interval are set to 1 second, 8 seconds, and
0.1 seconds, respectively. Similarly, for Argoverse 2, we
strictly follow its predefined benchmark settings: 3-second
history, a 6-second future, and a time interval of 0.1 sec-
onds.

However, training a diffusion-based model on nuScenes
is impractical due to its relatively small dataset size. To
enable the reuse of our diffusion model pre-trained on
WOMD, we reorganized the temporal configuration of the
nuScenes dataset to align it with WOMD. The total dura-
tion remains the same at 9 seconds. The original nuScenes
benchmark defines a 3-second history, a 6-second future,
and a 0.5-second time interval, which differs significantly
from WOMD. To bridge this gap, we perform two modi-
fications: We reorganize the temporal configuration of the
nuScenes dataset to match that of WOMD. Notably, the to-
tal duration of nuScenes data is the same as WOMD, i.e.,
9 seconds. First, since the temporal interval in nuScenes is
larger, we interpolate the data to achieve a time interval of
0.1 seconds. Next, we shift the current time (f = 0) back-
ward by 2 seconds in the original nuScenes configuration.
As a result, the temporal configuration of nuScenes data is
reorganized to match WOMD’s configuration, i.e., 1-second
history, 8-second future, and a 0.1-second time interval.

9. Error distribution analysis

FDES

:— ! ; : ; :
1
1 1 it .
=3 I 1 | Iy
g | | ' 1 1 1
= . | | c ! 1 Iy
S : 1 1 s ! 1 1
= w | |
o ! ! I 1 !
o 10 | w | 1 |
1 1 : 1
w |‘ﬂ”” |'|||: u I |: 4 :
e 1 roe |
: ws;: 1 Ve . :
i !
I
1 1 P : |
w | | | 1 | 1
o I 1 i L
[P} 0l w
z by I '
L ! [
w] 1 1 w | 1 1
e | I I 1
= | 1 1
~ wi [1 w0 I 1 Iy
{ 1 1 1 | 1
1 |
] 1 1 1 ' 1
o ——) o "o 20 &= W e w0 wnor M

r o

Error histogram analysis

Figure 6. Histogram comparison of minADEg and minFDEg be-
fore and after applying the proposed training method. The x-
axis corresponds to the error magnitude, and the y-axis shows the
agent count for each error bin. The red dashed boxes highlight
the regions where the proposed method effectively reduces large
errors, showcasing its ability to improve performance on challeng-
ing cases.

In Fig. 6, we compare the histograms of minADEg and
minFDEg before and after applying the proposed training
method. The x-axis represents the magnitude of the er-
ror, while the y-axis indicates the number of agents (occur-

rences) within each bin. As highlighted by the red boxes
in the figure, the proposed training method significantly
improves the performance for agents that originally exhib-
ited large errors. This demonstrates the effectiveness of the
method in addressing high-error scenarios.

10. More qualitative results

Figure 5 provides additional qualitative results to demon-
strate the effectiveness of the proposed method. The visual-
izations show that the proposed method not only performs
robust predictions for unique maneuvers but also learns a di-
verse distribution of maneuvers across various challenging
scenarios. Compared to the vanilla method, the proposed
approach demonstrates better coverage of plausible trajec-
tory distributions. This ensures that the predictions align
more closely with the complexity and diversity required in
real-world applications.

References

[1] Lan Feng, Mohammadhossein Bahari, Kaouther Mes-
saoud Ben Amor, Eloi Zablocki, Matthieu Cord, and Alexan-
dre Alahi. Unitraj: A unified framework for scalable vehicle
trajectory prediction. In European Conference on Computer
Vision, pages 106—123. Springer, 2024. 3

[2] Lightning-Al Lightning fabric: Expert control over pytorch
training loops. https://github.com/Lightning—
AI/pytorch-1lightning, 2023. 2

[3] Daehee Park, Hobin Ryu, Yunseo Yang, Jegyeong Cho, Ji-
won Kim, and Kuk-Jin Yoon. Leveraging future relationship
reasoning for vehicle trajectory prediction. In The Eleventh

International Conference on Learning Representations, 2023.
2

[4] Sungmin Woo, Minjung Kim, Donghyeong Kim, Sungjun
Jang, and Sangyoun Lee. Fimp: Future interaction model-
ing for multi-agent motion prediction. In 2024 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages
14457-14463, 2024. 2

[5] Yuheng Zhang, Tianjian Ouyang, Fudan Yu, Cong Ma, Lei
Qiao, Wei Wu, Jian Yuan, and Yong Li. Lcsim: A large-scale
controllable traffic simulator, 2024. 2

[6] Zikang Zhou, Jianping Wang, Yung-Hui Li, and Yu-Kai
Huang. Query-centric trajectory prediction. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 17863—-17873, 2023. 2

https://github.com/Lightning-AI/pytorch-lightning
https://github.com/Lightning-AI/pytorch-lightning

	Long-tail definition
	Random time window shift
	Metric definition
	minADE6 and minFDE6
	Difference between FPR and VaR

	Implementation details
	Definition of traffic rules
	Agent type classification results
	Additional experiments: backbone, metric and dataset
	Dataset details
	Error distribution analysis
	More qualitative results

