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1. Implementation Details
We report the implementation details used to train in the
described method, including network architectures, and hy-
perparameters.

Model Architecture For semantic segmentation, we use
SegFormer MiT-B5 for feature extractor f✓ and segmen-
tation decoder h�. For reconstruction, SimMIM [43] is
used for the implementation of reconstruction decoder g .
To implement Adapter Tuning, we utilize AdaptMLP from
[3] into each transformer layers to implement efficient tun-
ing, where Full Tuning updates all parameters including the
adapter, and Adapter Tuning updates only the adapter pa-
rameters (which occupies 0.1% of the entire parameters).

Hyperparameters For test-time adaptation, we set the
batch size to 1, and used Adam optimizer with learning rate
of 6 ⇥ 10�5/8, in reference of [25, 41]. For DDSD imple-
mentation, we set the initial DDSD threshold ⌧ to be 0, and
default ↵l to be 0.999, following [37]. For MIMA imple-
mentation, we masked the images with masking ratio 0.6
and mask patch size 32, as in [43]. Unlike recent CTTA
studies [25, 41, 45] that used multi-scale input with flipping
as the test-time Augmentation, we did not use any augmen-
tation strategy for our main results. �d=1.1 and �r=0.3 were
heuristically selected based on a small subset of the first tar-
get domain and kept fixed across all experiments to avoid
test-time overfitting. The same hyperparameters are used
for both benchmarks.

2. Ablation Study
Hyperparameter �d We conducted ablation experiments
to investigate the role the hyperparameter �d in DDSD
works within the system, using OnDA benchmark [29].
Only the segmentation loss Lseg has engaged in this abla-
tion study to exclude the influence of MIMA. We performed
cyclic adaptation over 5 rain intensities (25mm-200mm) 3
times, to understand how DDSD adapts to a completely new
domains and how it reacts after some initial adaptations.
Since 25mm is closer to the source domain and 200mm far-
ther, we consider 200mm to be harder to adapt to, requiring
more adaptation than 25mm. The domain changes are vi-
sualized by changing background colors, according to the
changing rain intensities written at the top. The height of
each bar represents the ratio of Full Tuning (FT) being ac-
tivated in every 125 timesteps, e.g., if FT is activated 100
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Figure 7. Ablation on hyperparameter �d. Percentage of FT
usage in OnDA benchmark. x-axis represents time and y-axis rep-
resents FT usage ratio. 5 domains are cyclically repeated 3 times.

times out of 125, the ratio is 80%.
Fig 7 illustrates how DDSD evolves over time. After

aggressive adaptation in the first round, triggered by the
initial encounter with the target domain, DDSD begins to
favour AT over FT, leading to a reduced FT ratio. This
change occurs because the target domain becomes relatively
familiar to both the student and teacher models. However,
in 200mm domain during the first round, the FT ratio in-
creases, as 200mm is significantly more distant from any
other domains and thus exhibits lower temporal correlation.
This phenomenon consistently holds across all experiments,
regardless of the size of �d value.

The effect of hyperparameter �d is particularly evident
in 100mm domain during the first round. In Fig. 7a, the FT
ratio is nearly 50%, while in Fig. 7b and Fig. 7c, the ratio
drops sharply to below 10%. Similarly, in 200mm domain
during the second round, FT is not activated in Fig. 7c, un-
like the other two graphs.

From these observations, we can conclude that as �d

increases, DDSD becomes less sensitive to domain shifts.
This is due to the role of �d a sensitivity hyperparameter
(described in Sec. 4.1), which acts as a scaling factor for the
dynamic threshold ⌧t. As the dynamic threshold increases,
a larger loss is required to activate FT, and vice versa.

Hyperparameter �r In Tab. 6, we conducted ablation
studies with respect to �r in (6), which determines the in-



Table 5. Ablation Study in Cityscapes-to-ACDC benchmark for 20 rounds. Mean is the average score of mIoU.

Test 1 10 20 Mean "
Condition FT DDSD MIMA F N R S F N R S F N R S 10R 20R

(a) X 70.6 42.7 62.7 61.7 69.3 42.7 61.2 59.7 65.5 39.3 55.9 58.5 59.3 55.9
(b) X X 70.3 44.5 65.1 63.3 68.9 49.2 64.9 61.5 66.2 48.2 62.0 57.5 61.9 59.6
(c) X 70.9 43.2 64.0 60.7 70.5 43.0 64.3 60.5 69.6 43.6 62.5 59.1 59.8 58.9
(d) - ours X X 70.3 44.5 65.1 63.2 69.9 49.5 66.5 63.0 68.8 50.1 63.9 59.9 62.2 61.5

Table 6. Ablation on hyperparameter �r Performance in
Cityscapes-to-ACDC benchmark.

�r Performance (mIoU)

(a) 0.0 61.3
(b) 0.3 61.9
(c) 0.5 61.3
(d) 1.0 60.6

fluence of the reconstruction loss Lrec
✓, . To exclude the in-

fluence of DDSD, we only utilized Full Tuning.
In (a), �r is set to 0, meaning that the reconstruction loss

does not participate in test-time Adaptation process. This
setup is similar to MIC [17], where the model is adapted
solely through the consistency loss between student and
teacher prediction maps. Since some important visual in-
formation is masked out from the target image, (a) yields
a suboptimal performance of 61.3%. In (b), �r is set to
0.3, achieving the best performance. However, as �r in-
creases in (c) and (d), performance declines. This degrada-
tion occurs because the influence of the segmentation loss
diminishes as reconstruction loss dominates the adaptation
process with big �r. Consequently, adaptation towards seg-
mentation, which is our primary task, becomes weaker.

Long-term Adaptation Although 0.5%p improvement
of DDSD in Tab. 3 may appear minor, we believe its
core strength–stability–has been underestimated within the
scope of the original 10-round experiment. Fig. 5 clearly il-
lustrates that DDSD maintains stable performance, whereas
Full Tuning (FT) exhibits a sharp performance decline after
the 5th round, indicating that DDSD’s advantage will grow
over time. To further support this observation, we extend
the ablation study reported in Tab. 3 from 10 rounds to 20
rounds. As shown in Tab. 5, (c) DDSD consistently outper-
forms FT at both the 10th and 20th rounds, with an widening
performance gap (0.5!3.0 between (a) FT and (c) DDSD,
0.3!1.9 between (b) FT+MIMA and (d) DDSD+MIMA).
These results strongly confirm the superior long-term sta-
bility of DDSD.

3. Analysis
Source Domain Forgetting Tab. 7 presents the perfor-
mance on Cityscapes dataset after each round of adapta-
tion on OnDA benchmark. Since Cityscapes serves as the

Table 7. Performance comparison of variants of proposed method
on Source Dataset (CityScapes). ours refers to Hybrid-TTA, our
main result, Source refers to SegFormer MiT-B5 with no adapta-
tion.

Test 1 2 3 4 5 Mean Target Mean

(a) Source 78.0 78.0 78.0 78.0 78.0 78.0 62.4
(b) AT 77.7 77.4 77.2 77.3 77.0 77.3 60.5
(c) DDSD 76.7 76.2 75.6 75.4 75.2 75.8 64.2
(d) DDSD+MIMA 77.0 76.0 75.3 75.0 74.7 75.5 66.7
(e) FT 76.5 75.6 75.2 74.9 74.7 75.4 65.0
(f) AT+MIMA 77.3 75.9 74.8 74.0 73.1 75.0 65.3
(g) FT+MIMA 76.8 75.7 74.8 74.2 73.7 75.0 66.3

source dataset for adaptation, we aim to assess the sever-
ity of catastrophic forgetting after each round of adaptation.
‘Mean’ represents the mIoU performance on Cityscapes,
while ‘Target Mean’ refers to the performance on synthetic
rain dataset, provided for comparison.

(a) Source, SegFormer MiT-B5 without any adaptation,
serves as the upper bound, achieving 78% on the source
dataset, with moderate target performance of 62.4%. (b)
AT, which updates only the adapter parameters, achieves
the best source performance of 77.3%, but its target perfor-
mance (60.5%) is lower than Source. This is because AT
effectively preserves source knowledge and prevents catas-
trophic forgetting but has limited adaptability. However,
this limitation is significantly mitigated by incorporating
MIMA into AT, as (f) AT+MIMA shows 65.3% of target
performance at the cost of slight reduction in source perfor-
mance.

Here, we can assume that MIMA encourages the model
to lose the source knowledge and collect target knowl-
edge, as a similar pattern is observed with (e) FT and (g)
FT+MIMA, where (g) exhibits lower source performance
but higher target performance compared to FT. As seen
from these findings, losing source knowledge is not neces-
sarily disadvantageous, because the model learns as much
as it forgets.

Nevertheless, excessive loss of source knowledge can
degrade target performance. Notably, (d) DDSD+MIMA
(ours) achieves an impressive 66.7% mIoU on the target
dataset, with a gain of +4.3%p compared to Source, while
substantially preserving source performance (�2.5%p).



Table 8. Performance comparison in OASIS benchmark. GTA [30] as the source dataset, and ACDC [32] as the test dataset.

Test 1 2 3
Condition F N R S F N R S F N R S Mean "

Source 43.4 19.6 41.3 38.1 43.4 19.6 41.3 38.1 43.4 19.6 41.3 38.1 35.6
TENT [40] 43.8 19.8 42.1 38.7 43.9 18.8 39.9 35.9 43.0 17.1 37.4 33.5 34.5
SVDP [45] 46.9 25.2 45.6 41.8 48.0 25.0 43.8 39.6 45.1 22.5 42.6 40.1 38.8
C-MAE [26] 46.1 20.0 43.2 38.9 45.8 18.9 42.9 39.1 46.2 20.5 43.2 38.1 36.9

Ours 45.1 23.0 46.6 42.5 48.9 26.9 48.2 43.3 49.2 28.8 48.0 43.3 41.2

Table 9. Performance Comparison on Cityscapes-to-ACDC benchmark over 3 rounds.

Test 1 2 3
Condition F N R S F N R S F N R S Mean"

CoTTA [41] 70.9 41.2 62.4 59.7 70.9 41.1 62.6 59.7 70.9 41.0 62.7 59.7 58.6
VDP [10] 70.5 41.1 62.1 59.5 70.4 41.1 62.2 59.4 70.4 41.0 62.2 59.4 58.2
BeCoTTA [20] 72.3 42.0 63.5 60.1 72.4 41.9 63.5 60.2 72.3 41.9 63.6 60.2 59.5
C-MAE [26] 71.9 44.6 67.4 63.2 71.7 44.9 66.5 63.1 72.3 45.4 67.1 63.1 61.8

Ours 70.3 44.5 65.1 63.2 71.8 48.2 67.1 63.7 71.2 49.3 67.1 63.3 62.2

GTA-to-ACDC benchmark We now dive deeper in
Hybrid-TTA performance on the OASIS [39] benchmark
protocol, as detailed in Tab. 8. The OASIS protocol involves
training models on a synthetic source dataset (GTA [30]),
tuning hyperparameters on a synthetic validation dataset
(SYNTHIA [31]), and finally evaluating model perfor-
mance on a real-world test dataset (ACDC [32]). It is widely
acknowledged that the OASIS benchmark presents greater
challenge than the Cityscapes-to-ACDC benchmark due to
a significantly larger domain gap between source and target
datasets.

Our base model was trained on GTA following the train-
ing protocol described in [39]. We select the best hyperpa-
rameters in SYNTHIA dataset as follows: �d=1.2, �r=0.2.
Finally, we present CTTA results on ACDC dataset over
3 rounds, where Ours outperforms SoTA [26, 45], demon-
strating our robustness under various environments.

Although using FT under large domain shifts may seem
counter-intuitive, severe shifts require greater adaptability
than what efficient tuning can offer (e.g., TENT in Tab. 8),
at the cost of stability and with the forgetting risks asso-
ciated with FT. To manage this trade-off and achieve bal-
ance, DDSD selectively triggers FT under significant distri-
bution shifts, while avoiding unnecessary updates in stable
regimes.

Performance Comparison with Parameter-efficient
Fine-tuning Methods Tab. 9 provides a detailed compar-
ative study of various CTTA strategies on the Cityscapes-
to-ACDC benchmark, extending the results discussed in
5.2, but evaluated over 3 adaptation rounds to highlight
early-stage adaptation behaviors and performances.

VDP [10], a pioneering work that introduces a prompt-
based Parameter-efficient Fine-tuning (PEFT) strategy for
CTTA, achieves a relatively disappointing result of 58.2,

notably underperforming even the baseline CoTTA. This
suggests that prompt-based PEFT adaptation strategies
might struggle in scenarios involving significant domain
shifts, such as from CityScapes to ACDC.

BeCoTTA [20], which employs a Mixture-of-Experts
(MoE) based Parameter-efficient Fine-Tuning CTTA strat-
egy, demonstrates slightly better average mIoU (59.5) com-
pared to VDP (59.4).

Performance Comparison with Continual-MAE Tab. 9
also provides performance of Continual-MAE [26], another
pioneering strategy based on MIM, which attains a consid-
erably stronger performance of 61.8. While our method em-
ploying MIMA outperforms C-MAE, our method also dif-
fers significantly in methodology. Specifically, C-MAE re-
constructs HOG features to emphasize geometric changes
(e.g., shape), promoting the learning of domain-invariant
features. On the other hand, MIMA reconstructs RGB val-
ues, not only enhancing robust feature extraction, but also
capturing domain-specific low-level cues (e.g., color, tex-
ture, brightness). This enables the model to better capture
cross-domain feature discrepancies, allowing DDSD to de-
tect domain shifts more effectively.

While MIM has been previously explored in TTA as a
domain-agnostic regularizer [26] or pseudo-label genera-
tor [28], our work departs from these conventional usages
in both design and intent. The integration between MIMA
and DDSD is not merely synergistic but functionally com-
plementary: MIMA enhances sensitivity to domain discrep-
ancies while improving robustness on familiar data, and
DDSD leverages this sensitivity to selectively detect do-
main shifts. We believe this task-driven coupling of MIM
and domain shift detection in CTTA is novel, offering a new
perspective on how reconstruction-based signals can be ac-
tively utilized beyond pretraining.



4. Performance Comparison (Full scores)
We provide the entire performance results of segmentation
CTTA experiments in Tab. 10 and Tab. 11. Our proposed
method, Hybrid-TTA, achieves 0.6%p mIoU improvement
over the previous state-of-the-art method on Cityscapes-to-
ACDC benchmark. Moreover, it outperforms other CTTA
methods on OnDA benchmark by 0.9%p. Notably, Hybrid-
TTA also achieves more than 20 times higher FPS than any
other CTTA method with comparable mIoU performance,
including CoTTA and SVDP (See Fig. 1 and Tab. 4), offer-
ing a robust solution for real-world online continual adapta-
tion challenges.

5. Qualitative Results
Fig. 8 is qualitative comparison of segmentation results
on Fog, Night, Rain and Snow domains for Cityscapes-to-
ACDC benchmark. Hybrid-TTA (column 4) is showing re-
markable segmentation results compared to other methods
including CoTTA [41] and SVDP [45], notably SVDP being
currently the state-of-the-art method in semantic segmenta-
tion CTTA.

In Night domain (row 3-4), Hybrid-TTA shows outstand-
ing performance as it is demonstrated in the main paper. It
is noticeable in Hybrid-TTA (row 3-4, column 4), particu-
larly in distinguishing the sky from vegetation (green) and
buildings (gray), where lighting conditions are poor. This
is a significant achievement, given that other methods often
misclassify these elements due to the altered appearance of
objects at night.

For Rain domain (row 5-6), Hybrid-TTA excels in seg-
menting fine details such as fence (beige) and accurately
identifying cars (deep blue) and sidewalk (pink) from road
(purple), which other methods often confuse with vegeta-
tion (green) or terrain (light green). This highlights the
model’s ability to maintain clear boundaries and accurate
object classification under adverse weather conditions.

In case of Snow domain (row 7-8), Hybrid-TTA effec-
tively delineates sidewalk (pink) and other urban features,
producing sharper segmentation maps compared to CoTTA
and SVDP, which often blur these boundaries.

Overall, we can observe that Hybrid-TTA not only main-
tains robustness across diverse environmental conditions
but also mitigate common segmentation issues, such as dirty
segmentation maps observed in CoTTA (row 3, column 2)
and SVDP (row 6, column 3). This robustness is partic-
ularly evident in the Night domain, which is typically con-
sidered the most challenging due to its low contrast and am-
biguous object boundaries. These qualitative results under-
score the effectiveness of Hybrid-TTA in real-world scenar-
ios, where adaptability and precision are crucial.
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Figure 8. Qualitative comparison of segmentation results on Fog, Night, Rain and Snow domains for Cityscapes-to-ACDC bench-
mark.


