
Inference-Time Diffusion Model Distillation

Supplementary Material

The supplementary sections are organized as follows. Sec-
tion 6 introduces the pseudo training algorithm behind our
inference-time diffusion distillation framework. In Section
7, we provide experimental details. Section 8 features ad-
ditional results. Following this, we delve into the future
directions and limitations of the proposed method in Section
9. Code will be released in https://github.com/anony-
distillationpp/distillation_pp.

6. Pseudo-code

Algorithm 1 Inference-time Diffusion model distillation
1: Input: Student model ✓, Teacher model  , N sampling

steps, k number of steps of teacher guidance, CFG scale
!, Teacher guidance scale �.

2: Output: Improved generation x⇤
0.

3:
4: xT ⇠ N (xT |0, I), 4t = T/N
5: for t = T to 4t do

6: Stage 1. Initial student estimation

7: x̂✓c(t) =
xt�

p
1�↵̄t✏̂

w
✓ (xt,c)p

↵̄t

8:
9: Stage 2. Revised teacher estimation

10: if step < k then

11: Renoising step s = t�4t.
12: xs =

p
↵̄sx̂✓c(t) +

p
1� ↵̄s✏. (✏ ⇠ N (✏|0, I))

13: x̂ c (s) =
xs�

p
1�↵̄s✏̂

w
 (xs,c)p

↵̄s
.

14: x̂✓new,c(t) = (1� �)x̂✓c(t) + �x̂ c (s)
15: else

16: x̂✓new,c(t) = x̂✓c(t)
17: end if

18: Update xt�4t by forwarding x̂✓new,c(t).
19: end for

We fix typo in (11) with x̃t ! xt. Also, we note that k =
1 used in every quantitative analysis, ensuring computational
efficiency. As the proposed framework revises estimation by
interpolation, it can be seamlessly extended with a convex
combination of multiple teacher revisions. Moreover, as
Algorithm 1 is described with random renoising strategy
(Line 12), it is fully compatible with general student models
ranging from ones directly predicting the PF-ODE endpoint
to the progressive distillation branches.

7. Experimental details

7.1. Extension to other solvers

For completeness, we extend Distillation++ to accommo-
date a broader range of ODE/SDE solvers. The core prin-

ciple lies in steering the denoising process with teacher
models. Specifically, we consider solving the variance-
exploding (VE) PF-ODE, commonly employed in standard
diffusion model implementations1, which can be readily de-
rived via reparameterization of VP diffusion models. Follow-
ing the notation in Lu et al. [26], we consider a sequence of
timesteps {ti}Mi=0, where t0 = T denotes the initial starting
point of the reverse sampling (i.e. Gaussian noise).

Euler [15]. This is in line with DDIM [40] and thus
included for completeness:

xti+1 = x̂✓new,c(xti) +
xti � x̂✓c(xti)

�ti
· �ti+1 ,

where x̂✓new,c(xti) refers to the revised estimate by interpo-
lation. CFG++ [5] can be integrated by replacing x̂✓c(xti)
with x̂✓?(xti).

Euler Ancestral. The Euler Ancestral sampler extends
the Euler method by introducing stochasticity, taking larger
steps and adding a small random noise. This may potentially
improve sampling diversity:

xti+1 = x̂✓new,c(xti) +
xti � x̂✓c(xti)

�ti
· (�tdi � �ti) + �ti✏,

where ti > tdi > ti+1 and ✏ ⇠ N (✏|0, I).
DPM-solver++ 2S [26]. We consider DPM++ 2S with

CFG++ [5] in VE-SDE setting [41]. Specifically, define
�t := e�t, hi := ti � ti�1, ri := hi�1/hi and initialize
xt0 with standard Gaussian noise. DPM-solver++ 2S in-
troduces an additional intermediate time step {si}Mi=1 with
ti > si+1 > ti+1. Let ri = si�ti�1

ti�ti�1
. Then, an iterate of

DPM-solver++ 2S with CFG++ reads:

ui = e�rihixti�1 + (1� e�rihi)x̂✓?(xti�1),

xti = x̂✓?(xti�1)� e�hi x̂✓?(xti�1)

+
1� e�hi

2ri

�
x̂✓c(ui)� x̂✓?(xti�1)

�
+ e�hixti�1 ,

where x̂✓c(ui) refers to the initial conditional denoised es-
timate with guidance scale 0 < � < 1, and the rest terms
are related to the higher-order correction of the renoising
process. That said, distillation++ modulates the denoising
process in (12) by interpolating x̂✓c(ui) with the teacher-

1https://github.com/crowsonkb/k-diffusion
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revised estimate x̂ c (ui) as x̂✓new,c(ui):

ui = e�rihixti�1 + (1� e�rihi)x̂✓?(xti�1),

xti = x̂✓?(xti�1)� e�hi x̂✓?(xti�1)+ (12)

1� e�hi

2ri

�
x̂✓new,c(ui)� x̂✓?(xti�1)

�
+ e�hixti�1 .

This simple modification implies that Distillation++ is
potentially compatible with various solvers, where the core
principle is to regularize the denoising path with revised
teacher’s estimates. We use ancestral variant (DPM++ 2S A)
of (12) by adding stochasticity in practice.

DPM-solver++ 2M [26]. While many student models
support only first-order solvers, customized distillation mod-
els in the open-source community2 are compatible with
higher-order solvers like DPM-Solver++ 2M. Using an itera-
tive process initialized with Gaussian noise, DPM-solver++
refines the sampling trajectory with higher-order corrections,
enabling precise updates. Similarly as DPM-solver++ 2S,
define �t := e�t, hi := ti�ti�1, and ri := hi�1/hi. Given
xt0 initialized as Gaussian noise, the first iteration reads:

xt1 = x̂✓c(xt0) + e�h1(xt0 � x̂✓c(xt0)).

Then, the following provides higher-order correction:

Di = x̂✓c(xti�1) +
1

2ri

�
x̂✓c(xti�1)� x̂✓c(xti�2)

�
, (13)

xti = e�hixti�1 � (e�hi � 1)Di. (14)

Rearranging (13), (14), we can rewrite the update steps as

xti = x̂✓c(xti�1)� e�hi x̂✓c(xti�1)

+
1� e�hi

2ri

�
x̂✓c(xti�1)� x̂✓c(xti�2)

�
+ e�hixti�1 .

As we are interested in modulating the final form of denoised
estimates, Distillation++ can be applied as follows:

xti = x̂✓new,c(xti�1)� e�hi x̂✓c(xti�1)

+
1� e�hi

2ri

�
x̂✓c(xti�1)� x̂✓c(xti�2)

�
+ e�hixti�1 .

Ancestral variants (DPM-solver++ 2M A) can be readily
derived by similarly adding a random noise.

7.2. Experiment Setup

In this work, we employ several diffusion distillation mod-
els: DMD2 [47], SDXL-Turbo [38], SDXL-Lightning [21],
LCM [28], LCM-LoRA [29], and SDXL-Lightning LoRA.
These models rely on classifier-free guidance (CFG) with a
fixed guidance scale during training. We use w = 7.5 for
CFG with teacher models x̂ c (s).

2https://civitai.com/

Baselines using 4 sampling steps include SDXL-
Lightning, DMD2, and SDXL-Turbo, while LCM and LCM-
LoRA use 8 sampling steps. Specifically, for Table 1, we use
4 step Euler sampling for SDXL-Lightning and its LoRA
variant, 4 step iterative random sampling for DMD2, LCM,
and LCM-LoRA (incompatible with conventional solvers),
and 4 step DPM++ 2S Ancestral sampling [26] for SDXL-
Turbo, utilizing DreamShaper [31], an open-source cus-
tomized model from the community.

All quantitative results presented in the main paper are
obtained using Algorithm 1, which employs a fully random
renoising process (Line 12) to ensure generality. For distil-
lation models that directly approximate the score function
(e.g., SDXL-Lightning, SDXL-Turbo), the renoising strat-
egy can be extended by incorporating the predicted epsilon
from the previous time step. While the performance gains
are marginal, we observed some improvement, likely due to
adherence to the fundamental refinement principle of reverse
diffusion sampling, as studied in [17].

For all quantitative analyses, we fix the number of teacher
guidance steps at k = 1. Our approach remains simple with
minimal hyperparameters, where the teacher guidance scale
� is the primary parameter. Specifically, we set � = 0.02
for LCM, LCM-LoRA, and DMD2, and � = 0.1 for SDXL-
Turbo, SDXL-Lightning, and SDXL-Lightning LoRA. The
same � values are used in Fig. 7 to evaluate the teacher
guidance approximation.

8. Additional results

In Fig. 9 and 10, we demonstrate the effectiveness of the
proposed inference-time distillation with various student
models. This advances stem from the guidance of teacher
model, whereas the teacher model itself does not guaran-
tee high-quality samples with few sampling steps, e.g. 8
steps (Fig. 8). That said, our work fosters a synergistic col-
laboration between two kinds of diffusion models: fast but
sub-optimal student models, and high-quality buy computa-
tionally expensive teacher models.

9. Discussions and Limitations

Beyond the image domain, diffusion models have become a
cornerstone of high-dimensional visual generative modeling,
including applications such as video generation [13] and
multi-view synthesis [44]. While computational efficiency
is critical for modeling in these high-dimensional spaces,
recent studies highlight the challenge of reducing inference
steps for video generation. Compared to the image genera-
tion, the quality and prompt alignment of generated motion
are more dependent on the number of inference steps [35].
Although an increasing number of video diffusion distilla-
tion models [20, 49] have emerged, a significant gap remains
between student and teacher video diffusion models. Apply-

https://civitai.com/


Figure 8. Comparisons between SDXL teacher model (8 steps) and ours. Our results are from the Fig. 3 of the main paper.

ing inference-time diffusion distillation to the video domain
offers a promising avenue for improving temporal consis-
tency, addressing issues that text-to-video (T2V) models–
often adapted from text-to-image (T2I) models–frequently
encounter.

Additionally, flow-based generative models generalize
diffusion models and similarly rely on off-the-shelf ODE
solvers. Thus, extending inference-time distillation to bridge
the gap between flow-based teacher models (e.g., [7]) and
student models (e.g., [39]) presents an intriguing direction
for future research.

One limitation of the proposed framework is that both
student and teacher (latent) diffusion models must operate
within a shared latent space to enable interpolation between
denoised estimates. To address this, one potential approach
could involve mapping latent estimates back to pixel space,
refining the student’s pixel estimates, and subsequently re-
encoding them. Furthermore, the interplay between students

and diverse open-source customized teacher models, which
exhibit varying styles and aesthetics, represents another com-
pelling avenue for exploration.



Figure 9. Qualitative comparisons against state-of-the-art distillation baselines. Baselines using 4 sampling steps: SDXL-Lightning, DMD2,
SDXL-Turbo. Baselines using 8 sampling steps: LCM, LCM-LoRA.



Figure 10. Additional qualitative comparisons against state-of-the-art distillation baselines.
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