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1. Related Works

1.1. Video Understanding with Large Language
Models

With the development of large language models (LLMs) in
the image modality, video LLMs have also been actively ex-
plored. Most video LLMs adopt architectures similar to im-
age LLMs, incorporating multi-modal adapters to capture
temporal information by aggregating frame-level represen-
tations from videos [12, 15, 31]. Common approaches to
video understanding in multi-modal LLMs (MLLMs) fol-
low the LLaVA-style variation, where models are adapted
to handle video inputs through lightweight projection layer
[13, 16, 33]. For example, Video-LLaVA [12] encodes both
image and video features into textual representations using
LanguageBind [32], while a shared projection layer con-
nected with the LLM. In addition to MLP-based or linear
projection layers [7, 13, 14], vision-language adapters with
cross-attention layers [1, 6, 30] are also widely used. Sim-
ilarly, Video-LLaMA [31] utilizes a Q-former architecture
[11] with learnable queries to bridge the gap between video
and language representations. Beyond video understand-
ing, it also integrates audio processing by training a sepa-
rate Q-former branch for audio understanding. To address
the limitations of video LLMs, such as handling diverse im-
age resolutions, balancing performance trade-offs with im-
age understanding, and improving long-term video compre-
hension, ongoing research aims to enhance the multi-modal
capabilities of LLMs [10, 22, 25, 26, 29].

1.2. Visual Question Answering in Autonomous
Driving

Early-stage research on autonomous driving with natu-
ral language began with video captioning. Initial works,
such as BDD-X [9] and HDD [21], focused on describ-
ing drivers’ actions and the reasoning behind them in spe-

cific driving scenarios. Building on these datasets, caption-
ing tasks in driving scenes have been widely explored, as
seen in ADAPT [8]. With the advent of LLMs, research
in autonomous driving extended beyond captioning to vi-
sual question answering (VQA), enabling more flexible and
instruction-driven interactions. Early efforts in this direc-
tion, such as DriveGPT4 [28] and VLAAD [19], leveraged
BDD-X and HDD to cost-effectively generate question-
answer pairs using ChatGPT. To introduce object-level log-
ical dependencies into QA pairs, DriveLM [23] and NuSce-
nesQA [20] utilized the nuScenes dataset [3], which offers
more detailed annotations, including 3D bounding boxes
and object tracks.

Following these works, several datasets based on
nuScenes [3], such as NuPrompt [27] and NuInstruct [5],
were proposed. However, the heavy reliance on nuScenes
limits the diversity of training data, restricting MLLMs
from learning a broader range of driving scenarios. To ad-
dress this limitation, LingoQA [17] introduced free-form
QA using newly collected videos from vehicles. Neverthe-
less, since it only provides front-view images, it fails to cap-
ture surrounding environmental context. Despite active re-
search in this domain, the size of available datasets and the
variety of included driving scenarios remain limited. More-
over, a key limitation of existing studies is their reliance on
n-gram precision metrics, such as BLEU [18], METEOR
[2], and CIDEr [24], to evaluate MLLMs. These metrics
often fail to penalize factual errors, such as incorrect turn
directions or misidentified traffic lights, as they primarily
assess lexical similarity. As a result, models may receive
high scores even when generating incorrect responses. Fur-
thermore, in tasks that do not involve explicit visual ground-
ing or motion planning, there is still a lack of standard-
ized benchmarks for visual question answering, making fair
comparison across models challenging.
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Task NuPlanQA-1M NuPlanQA-Eval*

Traffic Light 88,836 (9.1%) 203 (11.3%)
Weather/Lighting 88,874 (9.1%) 217 (12.0%)
Road Type/Condition 177,720 (18.2%) 192 (10.7%)
Surrounding Objects 88,870 (9.1%) 181 (10.0%)
Traffic Flow 88,853 (9.1%) 196 (10.9%)
Key Objects 88,875 (9.1%) 220 (12.2%)
Ego-vehicle Maneuver 177,721 (18.2%) 191 (10.6%)
Situation Assessment 88,864 (9.1%) 202 (11.2%)
Action Recommendation 88,782 (9.1%) 199 (11.0%)

Total 977,395 (100%) 1,801 (100%)

Table 1. Dataset distribution per task. * indicates test set of
NuPlanQA-Eval.

Figure 1. Word cloud of NuPlanQA-1M.

2. Dataset
In this section, we provide a detailed overview of the gener-
ation process, distribution, and examples of NuPlanQA-1M
and NuPlanQA-Eval.

2.1. Dataset Generation
NuPlanQA-1M. To generate a large-scale, high-quality
dataset of QA pairs in a scalable manner—incorporating
both multi-timestep and multi-view images—we utilize
GPT-4o (gpt-4o-2024-08-06). To ensure precise responses
from GPT-4o, we structure data from nuPlan [4] into per-
frame velocities, steering angles, and textual descriptions
of traffic situations. In particular, the traffic situation in-
formation plays a crucial role in providing a detailed and
comprehensive understanding of the scenes. We sample
frames from 1.5-second video segments, and using this
structured information, GPT-4o generate responses. The
specific prompt used for this generation process is depicted
in Figure 2. Through experimental evaluations of GPT-
4o outputs, we found that it performs best when prompted
to answer in a chain-of-thought manner, progressing from
low-level perception tasks to high-level reasoning tasks.
Based on this insight, we design subtasks ranging from traf-
fic light detection to vehicle maneuver recommendation, re-
sulting in 11 initial subtasks. By structuring responses in
this step-by-step manner, we obtain more accurate scene in-
terpretations. In the final NuPlanQA-1M dataset, these sub-
tasks are refined and consolidated into a total of nine sub-

tasks. After we generate QA pairs with GPT-4o, to guar-
antee its quality, we utilize several filtering criteria. For the
traffic light detection task, we use the traffic light status pro-
vided by the original nuPlan dataset. Since multiple signals
can be active simultaneously, we leverage both GPT-4o re-
sponses and raw metadata to resolve ambiguity. Addition-
ally, for tasks involving vehicle behavior, we filter out sam-
ples where GPT-4o responses are inconsistent with control
signals such as steering angle and velocity.

NuPlanQA-Eval. After generating QA pairs, we split the
dataset into training and evaluation sets, ensuring careful
scenario separation to prevent any overlap between them.
For the evaluation dataset, we convert the QA pairs into a
multiple-choice QA format by generating three additional
answer options—alongside the correct answer—using GPT-
4V. The prompt used for this task is shown in Figure 3.
However, since the generated choices might sometimes be
too easy to eliminate, contain overlapping options, or even
result in an incorrect true answer, we manually review and
refine the samples to ensure quality. To support zero-shot
and few-shot inference, as well as fine-tuning for evalua-
tion, we further split the evaluation dataset into train, vali-
dation, and test sets. Only the test set is used for final evalu-
ation. As illustrated in Figure 4, to prevent models from di-
rectly referring to traffic situation information, we exclude
it from the evaluation dataset. Our evaluation set includes
velocity and steering angle data for a 1.5-second window;
however, considering the required length of historical infor-
mation for inference, this can be adjusted using raw data
from nuPlan.

2.2. Dataset Statistics
The number and proportion of each subtask in the dataset
are shown in Table 1. In NuPlanQA-1M, each sub-
task accounts for 9.1% of the dataset, except for road
type/condition and ego-vehicle maneuver tasks, which have
double the proportion. However, the test set of NuPlanQA-
Eval maintains a relatively even distribution across all tasks
to ensure fair model evaluation. The train and valida-
tion sets of NuPlanQA-Eval follow the same distribution
as NuPlanQA-1M. As a result, NuPlanQA-1M contains
977,395 QA pairs and NuPlanQA-Eval consists of 1,801
QA pairs. As shown in Figure 1, our dataset predominantly
features terms such as “ego-vehicle”, “traffic light”, “inter-
section”, and “urban road”. Considering the complexity of
urban scenarios, we primarily include scenes from urban
environments, excluding some scenarios from Singapore.

2.3. Dataset Examples
We present additional example QAs for each subtask in
NuPlanQA-1M in Table 2. Detailed descriptions for each
task are as follows:



Figure 2. Prompt for generating NuPlanQA-1M. By providing control parameters for past frames and detailed textual descriptions of
traffic situations, GPT-4o achieves a better understanding of scenes. Through chain-of-thought generation with subtasks, it gains a deeper
comprehension of the context.

• Traffic Light: Detecting the presence and color of traffic
lights that the ego-vehicle should obey or be aware of.

• Weather/Lighting Conditions: Identifying weather and
lighting conditions that affect visibility on the road.

• Road Type/Conditions: Recognizing the clarity of lane
markings, the type of road, and conditions.

• Surrounding Objects: Detecting objects around the ego-
vehicle that the driver should be aware of.

• Traffic Flow: Analyzing the current traffic flow, includ-
ing congestion levels and whether vehicles are moving or
stationary.

• Key Objects: Identifying critical objects that are essential
for the ego-vehicle’s safe navigation and planning.



Figure 3. Prompt for multiple-choice option generation. Possible answer sets are generated using GPT-4o and further refined by human
annotators.

Figure 4. Prompt for evaluation. Multiple-choice options are provided along with control parameters for evaluation.

• Ego-vehicle Maneuver: Determining the movement of
the ego-vehicle based on control signals and visual infor-
mation.

• Situation Assessment: Providing a comprehensive de-
scription of the current driving scenario based on gathered
information.

• Action Recommendation: Recommending safe driving
actions for the ego vehicle by considering both internal
and external conditions.

3. Experiments
3.1. Ablation study
Table 3 presents the ablation study results for each subtask.
Compared to other configurations, the BEV-Fusion model
with multi-view, multi-frame inputs achieves the highest
scores in most subtasks. However, the BEV-Fusion model
with single-view inputs performs better on the traffic light

and weather/lighting condition tasks, both of which fall un-
der the road environment perception skill category. This
suggests that for static object detection, single-view inputs
contribute more effectively to perception. In particular, traf-
fic lights, which are typically positioned in the front-view
image, can be detected more accurately with single-view in-
puts by focusing on the most relevant image where a traffic
light is most likely to appear. For all other subtasks—except
for traffic light and weather/lighting condition—the BEV-
Fusion module with multi-view, multi-frame inputs outper-
forms other settings, including achieving the highest aver-
age score.

To evaluate the effectiveness of BEV features alone, we
compare different input configurations in Table 4. For
the BEV-only setup, BEV features from the encoder are
passed directly to the multi-modal projector, and the model
is trained for one epoch on NuPlanQA-1M. We also assess
the BEV-fusion setting by providing black frames to the im-



Task Example

Traffic Light

Q1: Is there a traffic signal the ego-vehicle should give priority to?
A1: No traffic light present.
Q2: Are there any traffic signals the ego-vehicle should obey?
A2: Red lights are visible.

Weather/Lighting Conditions

Q1: What are the current weather and lighting conditions?
A1: Clear and sunny.
Q2: Are there any weather conditions affecting the driving environment?
A2: Overcast, with adequate visibility.

Road Type/Conditions

Q1: What is the condition of the road surface?
A1: Dry, well-maintained asphalt.
Q2: How would you describe the current road type?
A2: Urban road with intersections.

Surrounding Objects

Q1: Which objects are present in the scene?
A1: Vehicles stopped ahead in both directions. Buildings along the street.
Q2: Which objects are present in the scene?
A2: Vehicles entering the intersection. Vehicles visible behind the ego-vehicle.

Traffic Flow

Q1: Is the traffic moving smoothly?
A1: Traffic is light with vehicles moving in both directions.
Q2: What is the current state of the traffic flow?
A2: Traffic is minimal with stationary vehicles ahead.

Key Objects

Q1: Are there any significant objects ahead that the driver needs to be aware of?
A1: None currently affecting driving.
Q2: What is the most important object nearby that the driver should focus on?
A2: Large truck in front with ’oversize load’ sign.

Ego-vehicle Maneuver

Q1: What is the vehicle’s current movement?
A1: The ego-vehicle is traveling straight while slightly decelerating.
Q2: What is the vehicle’s current maneuver?
A2: The ego-vehicle is following the lane while slightly curving to the right.

Situation Assessment

Q1: What is the overall situation assessment?
A1: The ego-vehicle is at an intersection waiting for the light to change.
Q2: How would you assess the current driving situation?
A2: The ego-vehicle is approaching an intersection with pedestrians crossing.

Action Recommendation

Q1: What action is advised for maintaining safety?
A1: Continue turning left while monitoring for any obstacles or vehicles entering the intersection from other directions.
Q2: What is the recommended maneuver for the vehicle?
A2: Maintain a steady speed while ensuring a safe gap with the vehicle ahead.

Table 2. Examples of NuPlanQA-1M. NuPlanQA-1M contains a diverse set of questions and detailed responses.

age encoder, disabling visual input while preserving the fu-
sion pathway. As shown, BEV features alone yield limited
performance. While extended training may improve results,
these findings underscore that BEV features are most effec-
tive when fused with image features, supporting our fusion-
based design.

3.2. Qualitative Results

In Figure 6, we present qualitative results on NuPlanQA-
Eval across nine subtasks. By comparing with LLaVA-
OneVision-7B [10], we highlight cases where MLLMs fail
to make correct predictions. Errors in traffic light per-
ception, vehicle maneuvers, surrounding objects, and other
road information lead to a lack of overall understanding
of traffic situations. In contrast, BEV-LLM demonstrates

superior performance by accurately interpreting these ele-
ments.

Figure 5 presents an example case where common text-
based metrics fail. Since n-gram-based metrics such as
BLEU-4, METEOR, and CIDEr evaluate generated sen-
tences based on n-gram matching, they struggle to capture
the context of road scenes and fail to recognize important
cues expressed with different phrases. For instance, in Fig-
ure 5, despite the LLaVA-OneVision [10] generating in-
correct answers, BLEU-4 and METEOR assign it a higher
score than the correct response from BEV-LLM. However,
using a multiple-choice question format, the evaluation suc-
cessfully identifies which model generates the correct an-
swer. Although alternative metrics like SPICE, which rely
on scene graphs, exist, they also face limitations in han-



Road Env. Perception Spatial Relations Recog. Ego-centric Reasoning

Method Input Trfc.
Light

Wea
-ther

Road
Type

Sur.
Obj.

Trfc.
Flow

Key
Obj.

Ego
Ctrl.

Situ.
Asse.

Act.
Rec.

Total

Baseline MV + MF 52.2 81.6 72.4 65.2 62.2 55.0 62.8 69.8 68.3 65.5
+BEV-Fusion SV + SF 62.1 90.8 74.0 69.1 68.4 60.5 68.1 75.7 73.9 71.4
+BEV-Fusion SV + MF 63.5 84.9 78.6 72.4 69.9 61.8 72.8 76.2 71.9 72.4
+BEV-Fusion MV + SF 58.1 87.1 84.9 75.1 75.0 66.8 76.0 81.2 81.4 76.2
+BEV-Fusion MV + MF 61.1 89.4 89.6 78.5 75.5 68.2 79.1 83.2 83.4 78.7

Table 3. Ablation study results on BEV-LLM across nine subtasks. The metric used is accuracy, with detailed experimental results
illustrated for each subtask. MV/SV denotes multi-view/single-view, and MF/SF denotes multi-frame/single-frame inputs. The best-
performing model in each task is bolded, while the second-best is underlined.

Input Road Env. Spatial Rel. Ego Rea. Avg.

Image + BEV 80.0 74.1 81.9 78.7
Image features 68.7 60.8 67.0 65.5
BEV-fusion features 24.9 16.9 15.1 19.0
BEV-encoder features 23.7 10.3 14.8 16.3

Table 4. Ablation study results on BEV-LLM across differ-
ent input features. The metric used is accuracy. Multi-view and
multi-frame inputs are used.

Figure 5. Comparison of free-form and multiple-choice ques-
tion responses. BLEU-4 and METEOR are calculated for free-
form responses. LLaVA-OV refers to the LLaVA-OneVision
model.

dling ambiguities in scene representation and spatial rela-
tionships.
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Figure 6. Qualitative results from evaluation. Results from LLaVA-OneVision-7B and BEV-LLM are shown for comparison. False
cases for LLaVA-OneVision (red) and correct cases for BEV-LLM (green) are illustrated to highlight scenarios where existing MLLMs
fail. Three past timeframes used as inputs are presented from left to right.
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