SteerX: Creating Any Camera-Free 3D and 4D Scenes with Geometric Steering

Supplementary Material

A. Proofs

Proposition 1. Given the reverse generative process in (1),
let q; be the transition kernel satisfying

pG(Xt—1|Xt)

=1 . 11
g (Ko %2) + e (x74), (11)

with |e;(X1.+)| < € uniformly. Also assume that the error
from the reward computed at the approximate state Xq is
bounded, i.e. |ry(%X0)—74(x0)| < 1. Then, given the defined
max potentials in (9),(10), Alg. I samples from

Do (X0) o po(x0) exp(Arg(x0))(1 + O(Te + An)) (12)

Proof. From the conditions, the unnormalized weight as-
signed to a complete path is

T
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t=1
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where for the second equality, we used

T
o(XT:0 H t(x7:0) = exp(Ary(Xo)). (15)

Let 74(Xo) = re¢(x0) + d(x0). We have
exp(Ary (%)) = exp(Ary(x0)) exp(Ad(x0)).  (16)
Given |0(x0)| < 1), we use the Taylor expansion
exp(Ad(x0)) = 1+ O(A\n). 17)

Further, we have that
T
110+ e(xra)) =1+ O(Tx). (18)
t=1

Combining (14),(17), and (18), the full weight reads
W (xr.0) = exp(Ary(x0))(1 + O(Te + An)). (19)

Integrating out the latent variables x7.1, the proof is com-
plete. O

Algorithm 2 SteerX (rectified flow)
Required: rectified flow model vy, reward function 74,
number of particles k, and initial noise {xtN

N(0,1).

~

j=1

Sampling:
1: fori e {N —1,...,0} do
2: forje{l...k} do
3: f({o — x{iﬂ — ti+1ve(x{i+1)
4: s{ — Ty (x] ) > Intermediate rewards
5: G{Z_ + exp(A maxfgti (Sg)) > Potential
6: end for
7. {x] }5_, ~ Multinomial ({%X] , G }*_))
8: z~ N(O, I)
9: xi +— (1- ti){:f({o};?:l +tiz
10: end for

11: | < arg maX;e (1 k) r(z,(xio)

12: return x;

B. Geometric steering on rectified flow models

Rectified flow-based video generative models [24, 35, 62]
follow a straight Ordinary Differential Equation path, mak-
ing it challenging to apply geometric steering since resam-
pling particles does not introduce diverse sampling trajec-
tories. Therefore, to introduce a stochastic process into the
generation process, we provide additional modifications to
adapt geometric steering for rectified flow models, as shown
in Algorithm 2. The process of computing intermediate re-
wards and potentials remains the same as before. However,
instead of resampling new particles from the existing parti-
cles, we resample the expected 2, from the multinomial
distribution. Then, project the resampled particles onto a
valid manifold at each noise level. This approach effectively
enables geometric steering in rectified flow models and en-
sures that the model explores diverse trajectories.

C. Additional Results

We present additional experiments and results to further val-
idate the scalability and effectiveness of SteerX. In Sec-
tion C.2, we explore how increasing the number of parti-
cles or extending video length impacts geometric steering,
providing insights into the scaling properties of SteerX. We
show qualitative comparisons for Text-to-4D generation in
Section C.3, and additional qualitative results for both Text-
to-4D and Image-to-3D scene generation in Section C.4.



Prompt : “In a bowl of white rice, a black kitten is struggling to climb over the grains of rice.”
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Figure 9. Resampling analysis for £ = 2, M = 2 in Text-to-4D.

Method k  Aesthetict Temporalt Dynamict Dyn-MEt3R?
Mochi [62] 1 0.491 0.243 - 0.884

+ SteerX 4 0.500 0.248 - 0.929

+ SteerX 8 0.526 0.251 - 0.945
HunyuanVideo [35] 1 0.549 0.241 - 0.911

+ SteerX 4 0.555 0.243 - 0.964

+ SteerX 8 0.570 0.244 - 0.979
CogVideoX [80] 1 0.592 - 0.158 0.880

+ SteerX 4 0.596 - 0.170 0.909

+ SteerX 8 0.600 - 0.172 0.930

Table 6. Ablation study on the number of particles.

Method k N  Temporalf  Dyn-MEt3R?
HunyuanVideo [35] 1 25 0.241 0911
HunyuanVideo [35] 1 49 0.245 0.940

+ BoN 4 25 0.239 0.931

+ BoN 4 49 0.246 0.948

+ SteerX 4 25 0.243 0.964

+ SteerX 4 49 0.248 0.978

Table 7. Ablation study on the number of frames.
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Figure 10. Scalability analysis with k£ = 2,3,4,8. We use 100
randomly selected samples in VBench-I12V for Image-to-3D/4D.
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C.1. Analysis on design choices

Linear resampling places resampling steps at uniform inter-
vals across the entire timestep 7. Also, as shown in Fig. 9,
the generative model tends to form a coarse geometric struc-
ture around 0.87" and focuses on fine details after 0.67.
Based on this observation, early and late resampling are uni-
formly scheduled between 0.87 — 0.67" and 0.47" — 0.2T,
respectively. Early resampling allows the model to build
upon the coarse structure, refine local geometry, and gradu-
ally incorporate fine details by exploring diverse generation
trajectories. In contrast, reward values tend to plateau in the
later steps, indicating limited exploration at late resampling.

C.2. Scalability of SteerX

We further explore the scaling property of SteerX by in-
creasing the number of particles k and video length N. Fig-
ure 10 presents the execution time versus reward values for
all generation tasks as the number of particles increases. Al-
though SteerX incurs additional computational overhead by
forwarding the scene reconstruction model multiple times,
it demonstrates better inference-time scalability than BoN.
Also, as the number of particles increases, SteerX achieves
greater performance gains by exploring more diverse sam-
pling trajectories, rather than relying on post-hoc selec-
tion. Table 6 presents quantitative results on the perfor-
mance of 4D scene generation as the number of particles
increases. We observe that Dyn-MEt3R remains highly cor-
related with other evaluation metrics, further demonstrating
the robustness of SteerX’s scalability. Also, Fig. 12 and Ta-
ble 7 show the impact of extending video length on Text-
to-4D scene generation. We observe that as video length
increases, the generated videos become more dynamic and
tend to be more object-centric. Compared to the best-of-N
approach, SteerX generates more visually plausible and dy-
namic objects, effectively capturing camera motion.

C.3. Additional comparisons in Text-to-4D

We further present qualitative comparisons to demonstrate
the effectiveness of SteerX in following the given camera
descriptions, as shown in Figure 16. SteerX successfully
aligns with both the specified camera trajectories and ob-
ject motions, resulting in highly natural 4D scenes.

C.4. Additional qualitative results

As shown in Figures 13 to 15, we provide additional quali-
tative results for Text-to-4D and Image-to-3D scene genera-
tion, demonstrating SteerX’s ability to generate diverse 3D
and 4D scenes only from images or text prompts. We also
provide video results in Fig. 11.

D. Limitations and Discussions

While SteerX effectively enhances both visual quality and
geometric alignment in 3D and 4D scene generation, it has
certain limitations that present opportunities for future im-
provements. First, SteerX currently relies on existing feed-
forward scene reconstruction models, meaning it cannot
directly reconstruct 4D Gaussian Splats (4DGS). Second,
video generative models for 4D scene generation struggle
to produce video frames with large inter-frame camera mo-
tion, limiting the overall scene scale. Future advancements
in video generation models that better handle broad camera
motion ranges will further enhance SteerX’s effectiveness
in large-scale 4D scene generation.
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Figure 12. Qualtitave ablation on video length. We use four particles and visualize frames with N = 25 (top) and N = 49 (bottom).
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Figure 13. Additional qualitative results in Image-to-3D.



"In the bustling square at night, a woman around 60 years old is happily dancing the square dance. ..."

Figure 14. Additional qualitative results in Text-to-4D.
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"In the park, a little girl in a pink dress is on the swing, in a full shot."

N

"Under the warm sunshine, a little dog is eating slowly."

Figure 15. Additional qualitative results in Text-to-4D.
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In the center of the living room, there is a sofa, and to the right of the sofa is a massage chair. The camera
horizontally moving from left to right.

A khaki-colored fisherman's hat made of canvas, with a wide, round brim, is hanging on a coat rack
behind the door. The camera zooms in to highlight the small daisy pattern embellished on the hat.

2 ¢ LA b £
In the underwater world, a mermaid swims past colorful coral reefs, with the camera moving vertically
from top to bottom during filming.

Figure 16. Qualitative comparisons on Text-to-4D.
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