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Figure 1. Examples of segmentation maps we used in ADEper dataset. We combine the open-vocabulary segmentation map and the
foreground segmentation map. Specifically, we annotate the class we want to personalize as the ‘<my concept>’ category index instead
of the original category index (e.g. chest and hot tub classes)

A. Implementation Details

A.1. Further details
In this section, we describe further implementation details
of experiments. For both SAN [4] and ODISE [3], we use
the batch size of 1, 100 number of masks, and λneg

Z = 0.1
across all datasets. Also, regarding the injection of visual
embedding, we set the α = 0.1 for FSSper and CUBper and
α = 0.01 for ADEper for both models. For SAN, we use
the learning rate of 5e-4 and set λneg

M = 10 for FSSper and
ADEper while using λneg

M = 500 for CUBper. For ODISE, we
use the learning rate of 2e-3 for FSSper and 1e-4 for CUBper

and ADEper. We set λneg
M =10.0, 500.0, and 1.0 for FSSper,

CUBper, and ADEper, respectively. We use CLIP [1] and
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Stable Diffusion v1.3 [2] for injecting visual embedding for
SAN and ODISE, respectively. The total number of train-
able parameters of our method is 0.4M, which denotes that
our method requires a negligible amount of additional pa-
rameters for personalization. We conduct all experiments
using one A5000 GPU with less than 24GB of GPU mem-
ory usage.

A.2. Dataset Preprocessing

Fig. 1 shows the segmentation maps we utilized. In order to
personalize the open-vocabulary segmentation models, our
method only requires the foreground segmentation maps for
training. In other words, during the personalization or train-
ing process, it is necessary to provide annotations only for
the segments that the user is interested in. For the quanti-
tative evaluation in our experiments, we employ combined

1



Figure 2. Hyperparameter ablation studies on CUB-200 dataset.

segmentation maps, as shown in Fig. 1. Unlike the previ-
ously used open-vocabulary segmentation maps, we anno-
tate categories specified as visual concepts with ‘¡special¿’
category index for quantitative evaluation. However, differ-
ent from ADEper, the FSSper and CUBper datasets do not in-
clude open-vocabulary segmentation maps and only contain
foreground segmentation maps. Consequently, for the quan-
titative evaluation, we use predictions of SAN and ODISE
for the open-vocabulary segmentation maps. Furthermore,
the vocabulary set used for the open-vocabulary segmenta-
tion models was based on the categories from the COCO-
stuff dataset. Previously, there was no established evalu-
ation protocol capable of accurately measuring the perfor-
mance of open-vocabulary segmentation and personal vi-
sual concepts quantitatively. Therefore, we develop com-
bined segmentation maps that enable the concurrent mea-
surement of IoUper and mIoU.

The FSS-1000 and CUB-200 datasets exhibit high visual
similarity within a single category and include foreground
masks, making them suitable for assessing personalization
performance for specific visual concepts. The ADE-20K-
847 dataset has been extensively used for the quantitative
evaluation of existing open-vocabulary segmentation mod-
els. Thus, we utilize a subset of ADE-20K to construct
ADEper for our experiments. As described in the main pa-
per, we intentionally include an equal number of images
with and without personal visual concepts since models
that are fine-tuned to recognize personal concepts overcon-
fidently predict other concepts as personal concepts.

For the CUBper dataset, all 200 classes are used for eval-
uation, whereas for the FSSper and ADEper datasets, only
30 classes are selected for the experiments, as described
in the main paper. From the FSS-1000 and ADE-20K-847
datasets, we select categories that are challenging to recog-
nize based solely on text descriptions, are rare, or can be
easily confused with other categories. In the FSS dataset,
we create pairs of similar categories and use images from
these similar yet distinct categories as images without the

Dataset Categories

FSSper adidas logo1−jordan logo / apple
icon−yonex icon / banana boat−wooden
boat / bath ball−pokermon ball / bulbul

bird−chickadee bird / cactus ball−gym ball
/ croquet ball−french ball / esport

chair−ganeva chair / folding chair−hair
razor / golf ball−soccer ball / hair

drier−rocking chair / jay bird−magpie bird
/ kappa logo−nike logo / kobe logo−puma

logo / ping-pong ball−rugby ball

ADEper altarpiece / ashtray / banner / beacon /
booklet / candelabrum / canister / chest /
console table / crane / dirt track / easel /

embankment / footbridge / hot tub / hovel /
kettle / kitchen island / pane / parking meter
/ pier / place mat / postbox / rod / runway /
saucepan / shower stall / soap dispenser /

stretcher / towel rack

Table 1. The categories we selected for FSSper and ADEper.

personal concept (e.g. wooden boat−banana boat). Table 1
describes the categories we selected for FSSper and ADEper

datasets.

B. Additional Experiments
B.1. Hyper-parameter Sensitivity
Fig. 2 demonstrates the sensitivity of the hyper-parameters
used in our work. Our proposed method includes the fol-
lowing hyper-parameters: 1) interpolation value between
visual and textual embeddings denoted as α, lambda values
for Lneg

M and Lneg
Z denoted as λneg

M , and λneg
Z , respectively. For

the model and dataset in the experiments, we used SAN and
CUB-200, respectively. Regarding α, we empirically found
that we achieve promising performances when α is set to



Figure 3. Additional segmentation results on CUBper. While SAN wihtout personalization fails to capture the personal visual concept (i.e.
my bird), our method applied to SAN recognizes it.



Dataset Method IoUper mIoU
K = 1 K = 3 K = 5 Avg. K = 1 K = 3 K = 5 Avg.

ODISE [3] 10.69 10.69 10.69 10.69 23.86 23.86 23.86 23.86
+ Visual Embedding 0.00 0.00 0.00 0.00 23.37 23.37 23.37 23.37
+ Ours 30.97 33.11 34.05 32.71 21.83 22.68 22.94 22.48

SAN [4] 41.08 41.08 41.08 41.08 55.68 55.68 55.68 55.68
+ Visual Embedding 0.00 0.00 0.00 0.00 56.12 55.36 54.45 55.31

FSSper

+ Ours 49.80 54.09 56.80 53.56 56.40 56.73 55.85 56.32

ODISE [3] 0.02 0.02 0.02 0.02 47.48 47.48 47.48 47.48
+ Visual Embedding 0.02 0.02 0.02 0.02 47.71 47.36 47.31 47.46
+ Ours 5.39 5.90 5.99 5.76 45.16 44.94 44.88 44.99

SAN [4] 68.25 68.25 68.25 68.25 77.32 77.32 77.32 77.32
+ Visual Embedding 0.70 0.00 0.00 0.23 72.77 67.13 65.98 68.63

CUBper

+ Ours 76.70 77.21 76.80 76.90 77.36 77.85 78.29 77.83

Table 2. Comparisons with baseline using visual embedding. We apply our method on both SAN [4] and ODISE [3] on FSSper and CUBper.
We vary K, the number of images and masks, to 1, 3, and 5.

low values. This indicates that while injecting visual infor-
mation indeed improves performances, the information of
textual embedding need to be included more than that of vi-
sual embedding. We select α = 0.1 since it achives the best
IoUper. Also, the performances saturate as λneg

M reaches to
a certain value, so we select (λneg

M = 500) when further per-
formance gain is no longer observed. Additionally, using
different values of λneg

Z shows consistent performances, so
we select the value (λneg

Z = 0.1) with the best performance.

B.2. Segmentation Results
Fig. 3 compares the segmentation results of SAN with-
out personalization and our method applied to SAN using
CUBper as the dataset, which demonstrate the effectiveness
of understanding personal visual concept (i.e. my bird). For
SAN without personalization, we provide the text descrip-
tions of the visual concept we want to personalize. Such
a qualitative analysis clearly demonstrates that our newly
proposed task, personalized open-vocabulary semantic seg-
mentation, is challenging with the existing open-vocabulary
segmentation model, and it needs to be explored. We
believe that our study serves as a cornerstone to further
improve performance on personalized open-vocabulary se-
mantic segmentation task.

B.3. Comparison with Visual Embedding
Since our work is the first to propose the personalized open-
vocabulary semantic segmentation task, we lacked baseline
models for comparison. In order to further demonstrate the
effectiveness of our proposed approach, we compared our
method against a baseline that uses masked visual embed-
dings instead of text embeddings. Specifically, given few
training images and masks corresponding to a given per-

Dataset Method IoUper mIoU

SAN [4] 28.59 57.66FSSper
+ Ours 38.47 60.09

SAN [4] 24.25 81.62CUBper
+ Ours 40.63 81.71

Table 3. Quantative results on concat datasets. We apply our
method on SAN [4] on FSSper and CUBper. K is set to 5.

sonal concept, we extracted visual embeddings using the
image encoder of CLIP and replaced the text embeddings
of personal concept with the averaged visual embeddings.
During the experiment, we maintained the other compo-
nents of open-vocabulary segmentation models (e.g., SAN,
ODISE).

Table 2 shows that our method significantly outperforms
the baseline using masked visual embeddings on the FSSper

and CUBper datasets. This result demonstrates the neces-
sity of using the representation space of text encoders for
tasks related to open-vocabulary segmentation. Similar re-
sults are observed in the α ablation study in Fig. 2, where
the performance in IoUper drops dramatically as the propor-
tion of masked visual embeddings increases excessively.

B.4. Further Experiments on Distinguishing
Personal Concept from Similar Classes

As shown in the qualitative results of the main paper (Fig. 3,
5, and 6), our method can distinguish between the target
visual concept (e.g., “my boat”, “my bird”) and its corre-
sponding similar classes (e.g., “boat”, “bird”) within the
same image. For the results, we used FSS and CUB datasets



Figure 4. Test images of concat dataset (FSSper). These datasets are used for evaluating the performance on distinguishing between the
target visual concept (e.g., “my boat”, “my bird”) and its corresponding similar classes (e.g., “boat”, “bird”) within the same image.

annotated with fine-grained segmentation maps, which in-
clude several images and masks on specific fine-grained
classes. However, we found that these datasets often contain
only one object per image, which limits our evaluation on
distinguishing the personal concept with its corresponding
similar classes within the same image.

To this end, we conducted an additional experiment by
concatenating two images horizontally: 1) a positive im-
age that contains the target visual concept and 2) a negative
image that contains the similar class but without the target
visual concept. Then, we treated the concatenated images
as a single image and input it for segmentation. For better
understanding, we show examples of concatenated positive
and negative class images, which we refer to as the “concat
dataset” in Fig. 4. Table 3 demonstrates that our approach
significantly improves IoUper compared to existing open-
vocabulary segmentation models in such an experimental
setting. These results show that our method can effectively
distinguish between the target visual concept and similar but
different classes, even when negative classes are present in
the same image.

While we used horizontal concatenation to include the
negative image in a single image, we believe that construct-
ing datasets with images that naturally include both the tar-
get visual concept and its similar classes would further en-
hance the evaluation of personalized open-vocabulary se-
mantic segmentation.
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