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A. Code and Website
The code for WAVE will be released soon. A project website has been created to introduce WAVE in a simple and accessible
manner, as well as to showcase a variety of qualitative results and videos. It can be accessed via the following link: project
page: https://jwoo-park0.github.io/wave.github.io/

B. More Details of Methods
B.1. Validating the assumption of warp-guided adaptive Attention
We propose warp-guided adaptive attention to manipulate attention, utilizing warped region masks. This approach is based
on the hypothesis that the attention mechanism in the U-Net decoder layers preserves spatial position correspondence. Lever-
aging this assumption, we design warped region masks that align with the attention maps, enabling direct attention manip-
ulation. This method efficiently incorporates the novel viewpoint information into the attention mechanism, contributing to
generating consistent images.

https://jwoo-park0.github.io/wave.github.io/
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Figure 1. Visualization of attention maps, warp images and generated views. We present the attention maps of the model alongside the
warp images to validate the assumptions of our proposed warp-guided adaptive attention. The results demonstrate that the attention map
adapts in a similar manner to changes in the warp image.

To validate the hypothesis above, attention maps are extracted from the U-Net decoder layers. Attention maps are extracted
at every DDIM [13] step, with those at different resolutions interpolated and averaged. Specifically, attention maps are
examined to analyze how the attention distribution varies across different viewpoints. As demonstrated in Fig. 1, the attention
maps dynamically adjust based on the warped images. This observation confirms our initial hypothesis that the decoder
attention retains spatial position correspondence. Thus, our study substantiates the proposed approach.

C. Metrics
C.1. Video consistency metrics
We introduce LPIPS-first, CLIPSIM-first, LPIPS-next, and CLIPSIM-next, the metrics proposed in previous works [3, 23]
to evaluate video consistency. Originally designed to assess frame-to-frame consistency in video synthesis, these metrics are
similarly employed to measure view consistency across generated images under different viewpoints in this work.

First of all, LPIPS [20] is a widely used metric for evaluating the perceptual similarity between two images. It computes
similarity by passing each image through a VGG network [12], extracting feature representations from intermediate layers,
and comparing them. Mathematically, it is expressed as follows:

LPIPS(I1, I2) =
∑
l

wl ∥ϕl(I1)− ϕl(I2)∥22 (1)

where: I1, I2 are the input images, ϕl(I) denotes the deep feature representation from layer l of a pre-trained network, wl

is a learned weight for layer l, ∥ · ∥2 represents the Euclidean norm. And, CLIP Similarity [4] is a metric that measures the
similarity between two images using the CLIP model. Specifically, it evaluates how similar the output embeddings are after
passing the images through CLIP’s encoder.

CLIPScore(I1, I2) =
ψ(I1) · ψ(I2)

∥ψ(I1)∥∥ψ(I2)∥
(2)

where: ψ(I) represents the CLIP embedding of image I , · denotes the dot product, ∥ · ∥ represents the Euclidean norm. As
illustrated in Fig. 2, LPIPS-first and CLIPSIM-first calculate LPIPS and CLIP similarity between the input viewpoint and all
other viewpoints. In contrast, LPIPS-next and CLIPSIM-next measure consistency between adjacent viewpoints. Since the
Next metrics are less affected by viewpoint changes compared to the First metrics, they provide a more effective measure of
view consistency.
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Figure 2. Illustration of consistency metrics. A figure that illustrates the primary consistency metrics used in this study: LPIPS-first,
CLIPSIM-first, and LPIPS-next, CLIPSIM-next [3, 23]. The first metric measures LPIPS and CLIP similarity by comparing images from
different viewpoints against the input viewpoint’s image. In contrast, the next metric computes LPIPS and CLIP similarity by comparing
images from adjacent viewpoints.

C.2. Camera parameter accuracy
View consistency is evaluated using the metrics outlined in Section C.1. However, these metrics are inherently limited in
providing a comprehensive assessment. Consequently, additional evaluation is required for a more thorough analysis. Specif-
ically, we propose estimating the camera viewpoint of the generated novel view synthesis images and comparing it against the
ground truth camera parameters. This approach captures consistency aspects that previous metrics fail to address. To quantify
camera parameter accuracy, three evaluation metrics are employed: (1) Frobenius Norm, (2) Rotation Angle Difference, and
(3) Angular Consistency.
Frobenius Norm Frobenius Norm is a matrix norm that extends the Euclidean norm to matrices. It is defined as the square
root of the sum of the absolute squares of the elements of a matrix. This norm provides a measure of the overall size of a
matrix. Since the camera extrinsic parameter is a matrix composed of 3x4 or 4x4, it could provide the camera parameter
accuracy between the estimated camera parameter and the ground truth camera parameter. Given the difference |aij | between
the measured camera parameters and the ground-truth camera parameters, the Frobenius Norm ∥A∥F is calculated as:

∥A∥F =

√√√√ m∑
i=1

n∑
j=1

|aij |2. (3)

Rotation Angle Difference Rotation Angle Difference measures the angular discrepancy between two rotation matrices or
quaternions. It is commonly used in 3D vision, robotics, and computer graphics to quantify rotational errors. Given two
rotation matrices R1, R2 ∈ SO(3), the Rotation Angle Difference θ is computed as:

θ = cos−1

(
trace(RT

1 R2)− 1

2

)
. (4)

Angular Consistency Angular Consistency refers to the property that ensures the relative orientation between viewpoints
remains stable across transformations. It is particularly important in applications such as novel view synthesis, 3D recon-
struction, and camera pose estimation. To quantify angular consistency, given a set of rotation matrices Ri associated with
different viewpoints, the angular deviation between consecutive viewpoints can be measured as:

θi = cos−1

(
trace(RT

i Ri+1)− 1

2

)
. (5)

For a sequence of rotations, the overall angular consistency error can be defined as the variance of the angular differences
where θ̄ is the mean rotation angle difference:

Eangular =
1

N − 1

N−1∑
i=1

(θi − θ̄)2, θ̄ =
1

N − 1

N−1∑
i=1

θi. (6)

Ensuring low angular consistency error is critical for maintaining coherence in generated views and preventing distortions in
viewpoint transitions.



D. Experiment Details
This section outlines the experimental setup, and additional experiments. We begin by describing the implementation de-
tails (Section D.1) and then introduce supplementary experiments conducted to further validate the proposed method. The
experiments are divided into four main parts.

First, the primary experiment is described, focusing on the evaluation of the consistency metric and camera accuracy, as
detailed in Section D.2. Next, the target-view image reconstruction metric experiments conducted on the MegaScenes dataset
[15], where images are generated for specific viewpoints rather than continuous ones, are presented in Section D.3. We then
detail image reconstruction experiments on the RealEstate10K(RE10K) sequence dataset in Section D.4. Finally, the method-
ology for extracting camera poses and performing the 3D Gaussian Splatting rendering task is explained in Section D.5.

D.1. Implementation details
For the novel view synthesis diffusion model, this work utilizes pre-trained models such as ZeroNVS [9] and MegaScenes
[15], which generate images at a resolution of 256×256, maintained across all experiments. DDIM with 50 inference steps is
adopted for sampling. Additionally, the attention map dropout technique from Tewel et al. [14] is implemented, using a fixed
dropout ratio of 0.2, with no significant performance changes observed when varying the dropout ratio. For noise initializa-
tion, a Gaussian low-pass filter is applied, following the filter used in prior studies [8, 18]. During the noise application to
latent variables, the noise level is fixed at 950 after the latent variables pass through the VAE encoder. The warp algorithm is
implemented using the Pyrender library, equal to MegaScenes. Camera parameters are also configured in the OpenGL envi-
ronment, as required by Pyrender. For warping, the depth map is extracted using the Depth Anything model [19], a monocular
depth estimation model, following the approach of the previous work, MegaScenes.

D.2. Consistency and camera accuracy experiment
The experiments are conducted using the MegaScenes, RE10K, and DTU datasets. Mip-NeRF 360 dataset is excluded due to
its limited number of scenes. The evaluation focuses on assessing image viewpoint consistency across consecutive viewpoints.
These viewpoints are arranged in an orbit pose, with the input image set as the central viewpoint and surrounding poses
forming an orbit configuration. The variation in orbit pose is illustrated as a gray line in Fig. 3, and in this study, we define
the orbit pose with 19 viewpoints, fixing the radius at 1 and setting the rotation angle to 30 degrees. Thus, this experiment
evaluates how well models generate consistent images when given a single input image and an orbit pose as input.

Camera parameters are generally divided into intrinsic and extrinsic parameters, with extrinsic parameters primarily used
for camera pose evaluation. Extrinsic parameters consist of a rotation matrix and a translation matrix. However, since the
translation matrix is highly sensitive to scale, our evaluation process focuses on the rotation matrix. To evaluate camera
accuracy, the generated images are saved from the previous experiment and COLMAP [10, 11] is used to extract camera
poses. COLMAP is chosen because it remains widely used for constructing camera parameter datasets [6, 7]. Since images
are generated using an orbit pose, we use the corresponding ground truth camera parameters for evaluation.

While most cases in camera parameter estimation are suitable for evaluation, some instances result in failure cases. During
the camera parameter estimation process for image sets, there are cases where the expected 19 camera parameters in the orbit
pose setup are not obtained. This issue arises when COLMAP’s SIFT algorithm fails to find correspondences between images,
leading to missing camera parameters. Since the inability to establish correspondences indicates a lack of image consistency,
we apply a strong penalty when evaluating camera accuracy. For example, when comparing the estimated camera parameters
to the ground-truth orbit pose, cases, where only 2 out of 19 cameras are reconstructed, are handled by duplicating the
available parameters to match the required 19 viewpoints before evaluation. This ensures that inconsistent images, which fail
to establish correspondences, receive a penalty. However, simply duplicating poses in this manner may not be suitable for all
scenarios, as the criteria for duplication vary depending on the number of available poses. It would be possible to apply the
maximum error to camera poses that are not successfully estimated. For Frobenius Norm, the maximum error can be defined
by comparing it with the identity matrix. Similarly, for Rotation Angle Difference and Angular Consistency, the maximum
error is typically set to π (180° radians). Leveraging these predefined values, we can introduce penalty-based adjustments,
which can be further explored in future evaluations.

D.3. Target view image reconstruction experiment
The target view image reconstruction experiment differs from the evaluation of consistency between consecutive images. This
experiment involves generating paired images for different viewpoints, where the model generates a corresponding image
from another viewpoint given an image from one viewpoint. Unlike the previous experiment, which measures viewpoint
consistency, this experiment evaluates the model’s ability to accurately generate images for specific viewpoints. We conduct



Table 1. Target view image generation evaluation. Quantitative evaluation of our method across diverse datasets (MegaScenes, DTU,
RE10K, and Mip-NeRF 360). We report PSNR, SSIM, and LPIPS to evaluate reconstruction quality. To assess the consistency of the
warped image regions, we include Masked PSNR, Masked SSIM, and Masked LPIPS [15]. Additionally, FID and KID are reported to
measure the overall quality of image generation. Our approach improves performance over the baseline methods (MS, ZeroNVS) across
overall metrics, demonstrating better view consistency and reconstruction fidelity.

Method PSNR ↑ SSIM ↑ LPIPS ↓ Masked PSNR ↑ Masked SSIM ↑ Masked LPIPS ↓ FID ↓ KID ↓
MegaScenes
ZeroNVS 7.69 0.150 0.611 11.09 0.653 0.268 46.05 0.029
ZeroNVS + WAVE 10.70 0.335 0.497 18.14 0.823 0.160 32.93 0.016
MegaScenes 12.28 0.432 0.395 23.36 0.877 0.094 13.55 0.005
MegaScenes + WAVE 12.49 0.438 0.392 24.496 0.878 0.092 15.03 0.005

DTU
ZeroNVS 8.94 0.213 0.644 18.05 0.627 0.286 63.27 0.016
ZeroNVS + WAVE 11.11 0.347 0.587 19.81 0.706 0.246 57.65 0.008
MegaScenes 10.88 0.394 0.503 20.36 0.722 0.211 34.96 0.007
MegaScenes + WAVE 11.95 0.386 0.460 20.72 0.722 0.212 22.59 0.004

RE10K
ZeroNVS 12.27 0.263 0.520 20.25 0.653 0.251 8.05 0.002
ZeroNVS + WAVE 12.33 0.269 0.514 20.33 0.657 0.248 6.15 0.001
MegaScenes 11.62 0.309 0.494 19.98 0.224 0.669 15.81 0.007
MegaScenes + WAVE 11.78 0.261 0.516 20.04 0.650 0.252 10.20 0.004

Mip-NeRF 360
ZeroNVS 11.00 0.123 0.675 23.89 0.768 0.209 78.64 0.016
ZeroNVS + WAVE 11.48 0.137 0.664 24.32 0.779 0.201 78.93 0.014
MegaScenes 11.90 0.182 0.566 25.76 0.809 0.155 58.87 0.009
MegaScenes + WAVE 12.29 0.181 0.560 26.24 0.813 0.155 58.48 0.011

this experiment to evaluate whether our method negatively impacts performance in this aspect. This experiment follows a
similar approach to MegaScenes [15].

Reconstruction experiments are conducted on the MegaScenes [15], RE10K [22], DTU [1], and Mip-NeRF 360 [2]
datasets. For the MegaScenes dataset, we follow the publicly available test code to ensure consistency with previous work
[15]. For other datasets, custom test configurations are created due to the inaccessibility of the test code. Given the model’s
inherent limitations in generating images with significant viewpoint changes, paired datasets with closer viewpoint pairs are
constructed for RE10K, DTU, and Mip-NeRF 360. While our primary focus is improving viewpoint consistency, our method
also yields improvements in reconstruction and image metrics. Notably, metrics such as Masked PSNR, Masked LPIPS, and
Masked SSIM [15] as for evaluating paired image consistency, shows improved performance in our experimental results. The
results demonstrate that our approach maintains consistency not only between the generated images but also between the
input view and the generated images. Additionally, the experiment shows that addressing the inherent factors of the diffusion
models leads to improved image quality in generating novel view images from specific viewpoints.

D.4. RE10K sequence evaluation
RE10K [22] dataset differs from other datasets in that it is a sequence dataset composed of videos, where each frame contains
corresponding image and camera viewpoint information. The dataset consists of videos, so evaluation is restricted to prede-
fined viewpoints rather than arbitrary ones. However, since it can provide consecutive viewpoint ground truth images unlike
other datasets, we conduct this experiment to validate our method by evaluating the generated images using image generation
and reconstruction metrics. For evaluation, a random input view image is selected from a video sequence, and 10 frames are
skipped between successive viewpoints to generate a total of 6 target viewpoints. The generated images are then compared
with their corresponding ground truth frames using LPIPS, PSNR, FID, and KID as evaluation metrics.

D.5. Downstream task
Recent studies have increasingly explored the application of novel-view diffusion models to 3D rendering tasks [9, 16, 17],
leveraging the generative capabilities of these models in combination with 3D models for rendering purposes. Rather than
solely focusing on novel-view synthesis, this work also investigates the generation of consistent images and evaluates their
effectiveness in 3D rendering tasks. First, camera poses are extracted from generated image sets using COLMAP [10, 11].



Table 2. Additional 3D rendering downstream tasks. We present the additional quantitative results of experiments from different datasets
where 3D Gaussian Splatting [5] performs 3D rendering by using those generated by our method and baseline.

Method PSNR ↑ SSIM ↑ LPIPS ↓

DTU
ZeroNVS 23.53 0.847 0.127
ZeroNVS + WAVE 25.56 0.871 0.101
MegaScenes 20.43 0.809 0.142
MegaScenes + WAVE 26.95 0.895 0.078

RE10K
ZeroNVS 24.74 0.883 0.107
ZeroNVS + WAVE 26.48 0.900 0.088
MegaScenes 21.23 0.817 0.145
MegaScenes + WAVE 24.51 0.876 0.086

The measured poses and generated images are then used as input to the 3D Gaussian splatting model [5] for rendering, with
3,000 training iterations. In addition, to mitigate potential errors in COLMAP’s camera parameter estimation, cases where
the number of camera poses is significantly lower than the number of images are excluded from evaluation. Due to space
limitations in the main paper, results from additional datasets that couldn’t be included are provided in Table 2.

D.6. Quantitative evaluation of adaptive warp-range selection effect
Conventional batch self-attention [14, 21, 23] aggregates all key-value pairs to compute the final representation. In contrast,
our proposed warp-guided adaptive attention selectively determines the relevant viewpoint range required to generate a spe-
cific viewpoint by the adaptive warp-range selection. It then aggregates only the necessary key-vale pairs based on viewpoint
changes. As shown in the main paper, applying the conventional batch self-attention method, widely used in previous studies,
results in reduced camera accuracy. However, since ground-truth images are unavailable, evaluating the generated results
alone does not provide a fully reliable assessment. To address this, we conduct a quantitative evaluation of camera accuracy
and extend our experiments beyond the MegaScenes dataset to DTU and RE10K datasets. As presented in Table 3, our warp-
guided adaptive attention significantly outperforms conventional batch self-attention. This result validates our hypothesis that
the reference range should dynamically adjust according to viewpoint changes.

Table 3. Camera accuracy in warp-guided adaptive attention. We show quantitative results to evaluate whether warp-guided adaptive
attention improves viewpoint accuracy. Our method, warp-guided adaptive attention, achieves higher camera pose accuracy compared to
batch self-attention, which has been used in previous studies.

Frobenius Norm (Rotation) ↓ Rotation Angle Difference ↓ Angular Consistency ↓
MegaScenes
MegaScenes + conventional batch attention 0.412 0.299 17.13
MegaScenes + WAVE 0.382 0.277 15.91

DTU
MegaScenes + conventional batch attention 0.383 0.281 16.09
MegaScenes + WAVE 0.155 0.110 6.32

RE10K
MegaScenes + conventional batch attention 0.321 0.231 13.25
MegaScenes + WAVE 0.149 0.108 6.20

E. More Qualitative Results
E.1. Camera parameter visualization
We present a visualization of the camera parameters measured in the camera accuracy experiment. While camera accuracy is
evaluated using only the rotation matrix from the camera extrinsic parameters, the translation matrix is visualized to provide
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Figure 3. Camera parameter visualization. These examples are taken from the camera accuracy evaluation process. The images below
represent the results generated by each model: MegaScenes [15] and MegaScenes + WAVE, while the camera graph above visualizes the
measured camera poses from the generated images.

further insights into the translation component. Since the camera poses are normalized, the height variation is minimal.
Therefore, only the x and z coordinates for camera translation are used. To maintain consistency with the ground-truth
pose, the measured parameters are also normalized to match the corresponding scale. As illustrated in the Fig. 3, it shows that
images with higher view consistency exhibit greater camera accuracy, whereas inconsistent images tend to have lower camera
accuracy. This result demonstrates that evaluating camera parameters is an effective approach for assessing view consistency.

E.2. Additional samples
In Fig. 4, and Fig. 5, we provide additional generation results for diffusion-based methods. Fig. 4 presents results generated
using the MegaScenes [15] dataset, while Fig. 5 showcases results from the RE10K [22] dataset. As previously noted in prior
research [15], ZeroNVS [9] fails to properly reflect viewpoint changes, often producing artifacts and inconsistencies across
images. In contrast, our method generates more consistent images, where objects remain persistently visible across different
viewpoints, and color variations are minimized, compared to MegaScenes and ZeroNVS. Furthermore, to provide additional
qualitative results, we present more examples from the RE10K and MegaScenes datasets in Fig. 6, and Fig. 7. These results
demonstrate the generalizability of our method across multiple datasets.
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Figure 4. Comparison to diffusion methods on MegaScenes. We compare our framework with existing diffusion-based models, ZeroNVS
[9] and MegaScenes [15]. Additional generation results are provided on the MegaScenes dataset. The images in the middle column represent
the input images.
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Figure 5. Comparison to diffusion methods on RE10K. We provide additional generation results on the RE10K [22] dataset to compare
our method with baselines. The images in the middle column represent the input images.



Input View

Figure 6. Qualitative results. Additionally, using samples from the RE10K dataset [22], we generate images with our method by taking
the input view image in the middle column and continuous camera poses as inputs.
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Figure 7. Qualitative results. Additionally, we generate images using our method with samples from the MegaScenes [15] dataset, where
the input view image in the middle column and continuous camera poses serve as inputs.



F. Failure Cases
Our method relies on novel view synthesis diffusion models that generate images from specific viewpoints. Consequently,
any inherent limitations of these models are reflected in the generated results. Additionally, since our approach incorporates
3D warping, it becomes challenging to extract meaningful information as the viewpoint difference increases. In Fig. 8, we
present examples of two key issues: (1) diffusion models exhibit distortions, particularly in thin structures such as lines, and
(2) as the viewpoint difference increases, the generated results exhibit repetitive structures, leading to reduced diversity. This
phenomenon can be attributed to the diminishing information provided by the warped images as the viewpoint increases.
However, as discussed in the main paper, the problem introduced by the warping algorithm could be alleviated through an
autoregressive approach, where a specific range is first generated and then iteratively used to synthesize subsequent ranges.
This approach could serve as a future direction for overcoming the limitations of the warping algorithm.

Figure 8. Failure cases. Top: an example that shows that the model struggles to accurately generate objects with thin structures, such as
lines. Bottom: an example that shows the model’s tendency to repeatedly generate identical structural patterns as the viewpoint difference
increases, reducing diversity.
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