Appendix: Winograd Structured Pruning for Fast Winograd Convolution

A. Details of Background

A.l. Structure of Winograd Convolution

In equation 1, Winograd convolution consists of five steps:

(1) Input Transformation (ITrans), (2) Filter Transfor-

mation (FTrans), (3) Element-wise Matrix Multiplication

(EWMM), (4) Channel-wise Summation, and (5) Out-

put Transformation (OTrans). As shown in Fig. 1, input

patches (indicated by d) of the p x p shape are extracted
from an input feature map of the H x W. There are k num-
ber of input patches.

¢ (1) Input patches (d) are transformed using matrix B to be
BTdB with p x p shape (Winograd-domain input patch).

* (2) Kernels (g) with kj, x k,, shape are transformed us-
ing matrix G to be GgGT with p x p shape (Winograd-
domain Kernel). For maximizing parallelism, k;, and k.,
are generally three in Winograd convolution.

* (3) Winograd-domain output patch with p x p shape is
obtained by element-wise multiplying B dB and GgGT.

* (4) Through summation of elements between channels,
the channel of Winograd-domain output patch is reduced
from cto 1.

* (5) After channel-wise summation in Winograd-domain,
the output patch S with (p — 2) x (p — 2) shape is trans-
formed using matrix A.

The matrices B, G and A are predefined by the Winograd

algorithm [12]. The matrices have a shape of p x p. When

pis set to 4, B and G consist of only 1, —1, and 0. Thus,

ITrans and FTrans requires only addition operations.

S = AT[(GgG") ® (BTdB)]A (1)
A.2. Convert EWMM and Channel-wise Summa-
tion to BGEMM

According to the ARM compute library [3], EWMM ac-
counts for the majority of inference time in Winograd con-
volution, although it varies from layer to layer. However,
GPUs cannot perform EWMM well, due to low compu-
tational intensity. Since one multiply and add operation
requires three memory accesses (loads two operands and
stores results) [4]. In Winograd-domain of Fig. |, EWMM
operation is the element-wise matrix multiplication of k in-
put tensors (R¢*P*P shape) and n weight tensors (R¢*P*P
shape). After EWMM, there is channel-wise summation.

To describe more specifically, EWMM proceeds in two
steps in the Winograd convolution (see Fig. 1). First, five
elements (1,2, 3, 4, 5) located in the same height and width
of the 3D weight tensor GgG” #1 and located in different
channels perform EWMM with a, b, ¢, d, e of input 3D ten-
sor BT dB+ta, respectively. Second, the channel-wise sum-
mation executes, by adding D), 2, @), @, and () located
in different channels made from EWMM.

For efficient GPU execution, EWMM and Channel-wise
Summation can convert to a BGEMM through transposi-
tion and reconstruction. We call this conversion, EC2B
(EWMM and Channel-wise summation to BGEMM). Af-
ter EC2B, BGEMM operates which are a combination of
p? identical shapes of GEMM operations. The GEMM is a
matrix multiplication of a weight matrix of n X ¢ shape and
an input matrix of ¢ x k shape. The aforementioned two
operation of EWMM are changed into one MAC (Multiply-
ACcumulate) operation (equation 2). The results are same
with EWMM operation + Channel-wise Summation, and
BGEMM.

Output(A) = (ax 1)+ (bx2)+(cx3)+(dx4)+ (e x5)
)

B. Details of Previous Work

We introduce two previously proposed pruning techniques,
WWP and FP, which are compatible with existing Winograd
convolution. However, as previously mentioned, WWP suf-
fers from low performance, while FP results in low accu-
racy. In this section, we describe the limitations of WWP
and FP in more detail.

B.1. Filter Pruning (FP)

Looking at Fig. 2, the FP pruned model after EC2B is still
a structural matrix. Thus, since there is no additional in-
dex computation, the existing GPU kernel widely used in
Winograd convolution can be applied. In Fig. 2, the pruning
unit size of FP is R¢*P*P in Winograd convolution, which
makes it hard to achieve high pruning ratio within 1% ac-
curacy drop. FP does not support fine-grained structured
pruning [9, 10], thereby we propose novel GPU-friendly
and fine-grained pruning that considers the GPU computa-
tion method of Winograd convolution.

" —_——
. Spatial-domain [Winograd-domain \ Spatial-domain
< c
P . il . 3 .
s |=|| Winograd-domain Spatial-domain
p :::: Input Patch B'dB Output Patch S
(1)ITrans. v f ®Xxp) X . ((P-2)x®-2)
BT()B il Winograd-domain l
IHI Output Patch 5)OTrans. hi
"B i ®xp) aToa [P2
il P2l g
i
i I
s / (EWMM (4)Channel-wise
H e summation e
Input Feature Spatial-domain : @ » H
Map Input Patch d (p X p) —

(2)FTrans,
GOG"

Spati;l-domaj_n : ®xp) Convert (3) and (4) to BGEMM Outp;tl Feature
Kemel g (3 x 3) \ m) ap
~—e
_____________________________ N/ - mmm— e mmmm———— - -
®:(3) Ewmm BGEMM
=p? x GEMM

1
(©): (4) channel-wise
Summation
{FIE]

Rearrange AB

0 #a-1

EF

0 #a-2

cD
0 #b-1

GH
0#b-2

L

@D=ax1,@=bx2,
=cx3,@=dx4,0=ex5
Ch l—wises tion:

BGEMM:

1
[}
1
1
1
1
1
1
1
1
1
1
|
1
|
1
[}
1
1
1
[}
1
[}
1
1
1
1
1
X1+bx2+cx3+dx4+eX5|)

A=0+@+0+@+0O

A=a
B=fX6+gx7+hx8+ix9+jx10]|
C=kx1+Ix2+mx3+nx4+0x5))

Figure 1. Overview of Winograd Convolution (Top) & EC2B process (Bottom)

S = AT[(GFilter_Prune(g)GT) ® (BTdB)|JA (3)

B.2. Winograd Weight Pruning (WWP)

WWP can prune elements (R) from weights as long as they
do not affect the accuracy of DNNs as presented in Equa-
tion 4. When the pruned models generated by WWP are
executed in GPUs, the models are converted to BGEMM
to maximize GPU throughput. However, such a conver-
sion creates sparse matrices causing irregular data structures
and making it harder for GPUs to load data from the global
memory (see Fig. 3). Loading irregular data structures re-
quires significant index computation time in GPUs

S = AT[Weight_Prune(GgG') ® (BTdB)|]A (4)

C. Details of WINS

We propose Winograd Structured Pruning (WINS). WINS
performs pruning on the transformed weight (Winograd-
domain weight) to address the compatibility issue between
Winograd convolution and pruning. For GPU efficiency,
Winograd convolution is converted into BGEMM opera-
tion. BGEMM consists of a combination of p? sub-matrix
multiplication operations, which are identical shapes. The
weight shape of sub-matrix multiplication is n X c. As

1. EWMM & Channel-wi: (Wi domain) 2. BGEMM (Winograd-domain) 3. OTrans. (Spatial-domain)
P @_, EWMM BGEMM @ unpruned weight
1\ K —p?
—X . =p?XGEMM
\ @: Channel-wise T11 E M pruncd weight
| Summation GEMM #1 | & I
BTdp#k | Winograd-domain IEC?};. 3 1 | Rearrange A B
A p———1 -
1 Input BTdB HEEAC > omr |, grmet
9 101112 E 1G] HAB
= o#a Spatial-domain
Output Feature Map S
(
s o r f
[t L]
HCD Mwxwx 0
| I Hyzv? |
||] f
u . |
I !
H o /
: [wxf
el
filter-wise
(weight filter No.2) 1
| |
i | |
| |
Importance score < Threshold | | n
: remove redundant 3D tensor | !
o SEm i
GgGTHz i oo inograd-domain :
iiiil Kernel GG !

Figure 2. Overview of Filter Pruning (FP) during Winograd convolution [5].

1. EWMM & Channel- (domain) 2. BGEMM (Winograd-domain) 3. OTrans. (Spatial-domain)
v
d weight
ae i im N\ @: EWMM N BGEMM @ unpruned weig]
bf Jnood ») — =p? X GEMM dweigh
O =t ko i1 (@:Channel-wlse Tl @ pruncd weight
himm Lp | Summation GEMM #1 1555 mm| p-2
BTdB#a BTdB#b e BTdB#k [Winograd-domain EC2 a'f l Rearrange A B p-2 AN
J Input B"dB AC [o1 | | i
EG 1 [PERET (
AB —
w
O#a vzl Spatial-domain
i Output Feature Map S
b — 1
| . O#a2 1 ig (
> G4 d]
. cp L WX !
H W' X P e
H 0#b 11 S {
. |
co . 1
— . =
1 om1 . . :]
H : we
et
GH] L
T ome2 0 1
W~
. o#k vz

Figure 3. Overview of Winograd Weight Pruning (WWP) [8].

GgGTH1
L

GgG™H2
EEEN/

EEER/ Kernel GgG™

1. EWMM & Channel-wi (domain) 2. BGEMM (Winograd-domain) 3, OTrans. (Spatial-domain)
a , R — (®): ewmm . BGEMM
bt 'jf(‘ (\ ~—E— =pZxGEMM
Rl T) @:Chunnel-wlsz a1 @I
h ip 1] summation Gl b * : p2
1 1 { = —
BTdB#a BTdB#b eee BTdB#k | Winograd-domain EC2B—— 4 | Rearrange AB P-ZI \Un
(| inputBTdB V 1HEEEAC [ota1 G 1t
! ﬂaﬂll| 1 (R (
1 n (e AB
i -
| tmmEn o4 1] Spatia-domain
- Output Feature Map §
i I [E
H : 1 otz (\d { .
= 7 .
! U S m@, | B e saaana
: o B vy :
|
cp) 1
~ 5 .
1 om1 . . : :
: : e
Row-wise : mE
(N0.9,10,11,12) : @l B
-
G 0
ok v ::

Figure 4. Overview of Winograd Structured Pruning (WINS).

shown in Fig. 4, WINS performs vector-wise pruning for
each p? sub weight matrices, respectively. WINS groups
each row vector and column vector in the sub weight ma-

trix, and if the representative value of the vector is less than
the threshold, it is considered redundant and is removed.
WINS uses a representative value of the vector through

Model Dataset Method Pruning Ratio (PR) Baseline mAP Pruned mAP
DETR [1] COCO [6] BCBP [9] 50% 42.0% 40.9%
[Backbone: ResNet-50] WINS-AB 50% 42.0 % 41.2%
SSD300 [7] Pascal VOC [2] BCBP [9] 30% 77.8% 76.7%
[Backbone: VGG-16] 07 +°12 WINS-AB 30% 77.8% 77.3%

Table 1. Experiments on object detection. Pruning refers solely to the backbone.

group LASSO [11]. Since the height and width of the sub
weight matrix are n and c, the pruning unit size of WINS is
n or c vector. The pruning unit size of FP is one 3D filter
(Re*P*P), Therefore, WINS is fine-grained pruning version
of FP.

Column-wise method (WINS-C) groups elements with
different output channels (n) in the EC2B converted weight
and processes them as one pruning unit size. The pruning
unit of WINS-C is R?*1x1x1 After EC2B, the column
vector of GEMM weight is pruned, as shown in Fig. 4.

Row-wise method (WINS-R) groups elements with dif-
ferent input channels (c) in the EC2B converted weight and
processes them as one pruning unit size. The pruning unit of
WINS-R is Re*1x1 - After EC2B, the row vector of GEMM
weight is pruned, as shown in Fig. 4.

S = AT[Structured_Prune(GgG™T) ® (BTdB)]A (5)

C.1. Object Detection

As shown in Table. I, we conducted experiments apply-
ing pruning on DETR and SSD300 on the COCO and Pas-
cal VOC, respectively. First, for DETR, we applied prun-
ing with retraining (300 epochs), and WINS-AB showed a
mAP drop of 0.8% compared to the baseline. Second, for
SSD300, we applied pruning with fine-tuning (5 epochs),
and WINS-AB showed a mAP drop of 0.5% than baseline.
In both models, WINS-AB has a smaller accuracy drop than
BCBP [9] at the same pruning ratio.

References

[1] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In European confer-
ence on computer vision, pages 213-229. Springer, 2020. 4

[2] Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (voc) challenge. International journal of computer
vision, 88:303-338, 2010. 4

[3] Peter Harris. The mali gpu: An abstract machine, part 2-
tilebased rendering, 2014. 1

[4] Liancheng Jia, Yun Liang, Xiuhong Li, Ligiang Lu, and
Shengen Yan. Enabling efficient fast convolution algorithms
on gpus via megakernels. /[EEE Transactions on Computers,
69(7):986-997, 2020. 1

[5S] Andrew Lavin and Scott Gray. Fast algorithms for convo-
lutional neural networks. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
4013-4021, 2016. 3

[6] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollar, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
Computer Vision—-ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pages 740-755. Springer, 2014. 4

[7]1 Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
Berg. Ssd: Single shot multibox detector. In Computer
Vision—-ECCV 2016: 14th European Conference, Amster-
dam, The Netherlands, October 11-14, 2016, Proceedings,
Part I 14, pages 21-37. Springer, 2016. 4

[8] Xingyu Liu, Jeff Pool, Song Han, and William J Dally. Effi-
cient sparse-winograd convolutional neural networks. In In-
ternational Conference on Learning Representations, 2018.

A
o

[9] Cheonjun Park, Mincheol Park, Hyun Jae Oh, Minkyu Kim,
Myung Kuk Yoon, Suhyun Kim, and Won Woo Ro. Balanced
column-wise block pruning for maximizing gpu parallelism.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, pages 9398-9407, 2023. 1,4

[10] Cheonjun Park, Mincheol Park, Hyunchan Moon,
Myung Kuk Yoon, Seokjin Go, Suhyun Kim, and Won Woo
Ro. Deprune: Depth-wise separable convolution pruning
for maximizing gpu parallelism. Advances in Neural
Information Processing Systems, 37:106906—-106923, 2024.
1

[11] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and
Hai Li. Learning structured sparsity in deep neural networks.
In Advances in neural information processing systems, pages
2074-2082, 2016. 4

[12] Shmuel Winograd. Arithmetic complexity of computations.
Siam, 1980. 1

	Details of Background
	Structure of Winograd Convolution
	Convert EWMM and Channel-wise Summation to BGEMM

	Details of Previous Work
	Filter Pruning (FP)
	Winograd Weight Pruning (WWP)

	Details of WINS
	Object Detection

