
FlowChef: Steering of Rectified Flow Models for Controlled Generations

Supplementary Material

7. Supplementary Overview
This supplementary material contains proofs, detailed re-
sults, discussion, and qualitative results:
• Section 8: Proposition 4.1 proof.
• Section 9: Theorem 4.3 proof.
• Section 10: Numerical accuracy analysis.
• Section 11: Error dynamics for Diffusion Models.
• Section 12: Extended related works.
• Section 13: Empirical study of pixel and latent models.
• Section 14: Detailed algorithms.
• Section 15: Experimental setup details.
• Section 17: Hyperparameter study.
• Section 18: Qualitative Results.
• Section 19: Limitations & Future Work

8. Proof of the Proposition
Proposition 4.1. Let p1 ∼ N (0, I) be the noise distribu-
tion and p0 be the data distribution. Let xt denote an inter-
mediate sample obtained from a predefined forward func-
tion q as xt = q(x0, x1, t), where x0 ∼ p0 and x1 ∼ p1.
Define a ODE sampling process dx(t) = f(xt, t)dt and
quadratic L = ||x̂0− xref

0 ||22, where f : Rd× [0, T]→ Rd

is a nonlinear function parameterized by θ. Then, under
Assumption 1, the error dynamics of ODEs for controlled
image generation are governed by:

dE(t)

dt
= −4sE(t) + 2e(t)T ϵ(t),

where e(t) is x̂0−xref
0 , E(t) = e(t)T e(t) is the squared

error magnitude, s > 0 is the guidance strength, and ϵ(t)
represents the accumulated errors due to non-linearity and
trajectory stochasticity.

Proof. Consider the sampling process described by the
ODE:

dx(t)

dt
= f(x(t), t), (15)

where f(x(t), t) is a nonlinear function often parameter-
ized via neural network θ. To guide the sampling process
toward minimizing a loss function L(x̂0, x

ref
0), we can ad-

just the dynamics by adding the gradient ∇xt to the vector
field (see Eq. 2) as:

dx(t)

dt
= f(x(t), t)− s · ∇xt

L(x̂0, x
ref
0), (16)

where s is the guidance strength. Let e(t) = x̂0−xref
0 be

the error between the estimated and target samples. Since

x̂0(t) = x(t) +
∫ 0

t
f(x(τ), τ)dτ , differentiating e(t) with

respect to t yields:

de(t)

dt
=

dx̂0(t)

dt
(17)

=
dx(t)

dt
− f(x(t), t) (18)

= −s · ∇xtL(x̂0, x
ref
0). (19)

However, this requires the compute-intensive backprop-
agation through ODESolver. Therefore, it is important to
find an approximation of ∇xt . And the most convenient
approximation is: ∇xt

≈ ∇x̂0
. However, this derivation

assumes that the integral
∫ 0

t
f(x(τ), τ)dτ is well-behaved

and that x̂0(t) depends smoothly on x(t). In the presence
of nonlinearity and stochasticity, small changes in x(t) can
lead to disproportionately large changes in x̂0(t), due to
the sensitivity of the integral to the path taken. Moreover,
potential stochasticity in the trajectory mean that the map-
ping from x(t) to x̂0(t) is not injective; different trajectories
x(t) may lead to the same x̂0(t) or vice versa. This non-
unique mapping complicates the error dynamics because
∇x̂0
L may not provide a consistent or effective direction

for updating x(t). Including the effects of nonlinearity and
stochasticity, the error dynamics become:

de(t)

dt
= −s · ∇x̂0

L(x̂0, x
ref
0) + ϵ(t), (20)

where ϵ(t) represents the errors introduced by the non-
linearity in f(x(t), t) and the sensitivity of x̂0 to x(t) due
to potential stochasticity. In other words, the approximation
error ϵ(t) can be represented as:

ϵ(t) = s ·
(
∇xt
L(x̂0, x

ref
0)−∇x̂0

L(x̂0, x
ref
0)

)
. (21)

Assuming a quadratic loss function L = ||x̂0 − xref
0 ||22,

we have∇x̂0
L = 2e(t), leading to:

de(t)

dt
= −2se(t) + ϵ(t). (22)

To understand the convergence of the error, we analyze
the evolution of the error magnitude E(t) = e(t)T e(t). Dif-
ferentiating E(t) with respect to time t, we get:

dE(t)

dt
=

d

dt

(
e(t)⊤e(t)

)
(23)

= 2e(t)⊤
de(t)

dt
(24)

= 2e(t)⊤ (−2se(t) + ϵ(t)) (25)

= −4se(t)⊤e(t) + 2e(t)⊤ϵ(t) (26)

= −4sE(t) + 2e(t)⊤ϵ(t). (27)

This completes the proof.

Notably, we derive this behavior of the ODE processes
under the assumption that the error rate cannot be calculated
accurately. This can either come from the incorrect estima-
tion of x̂0 or the nonlinearity of ODESolver itself. In the
next section, we further concretize this with respect to the
RFMs.

9. Proof for Theorem
Theorem 4.3 (Update Rule for Steering the RFMs). Let
uθ : Rd × [0, T] → Rd be a velocity field with constant
Jacobian Juθ

. Define the estimated initial state x̂0 from an
intermediate state xt by

x̂0 = xt + t · uθ(xt, t).

Consider the quadratic loss function L = ∥x̂0 − xref
0 ∥2,

where xref
0 is a reference sample. Then, the update rule for

controlled generation is given by

xt−∆t = xt +∆tuθ(xt, t)− s′∇x̂0
L,

where:
• ∇x̂0L = 2(x̂0 − xref

0),
• s′ ≈ (I +∆t · Juθ

) (I + t · Juθ
)
⊤,

• I is the identity matrix.

Proof. By lemma 4.2 and Assumption 2, we can further ap-
proximate the Eq. 8:

∇xt
L = (I + t · Juθ

)T∇x̂0
L ≈ KT∇x̂0

L, (28)

where K is the constant matrics as ∆t → 0 and t → 0.
Under this formulation, we can perform controlled image
generation in three steps:

Step 1: x̂0 = xt + t · uθ(xt, t)

Step 2: x̂t = xt −KT∇x̂0
L

Step 3: xt−∆t = x̂t +∆t · uθ(x̂t, t).

(29)

However, this will require additional forward passes. But
according to Assumption 2 if ∆t is sufficiently small, then
by Taylor series approximation, we get:

xt−∆t = xt −KT∇x̂0
L+∆t · uθ

(
xt −KT∇x̂0

L, t
)

(30)

= xt −KT∇x̂0L
+∆t

[
uθ(xt, t)− Juθ

·KT · ∇x̂0
L
]

(31)

Now, as Juθ
is constant w.r.t. ∆t. Hence, we get:

xt−∆t = xt − (I +∆t · Juθ
)KT∇x̂0

L+∆t · uθ(xt, t)
(32)

= xt +∆t · uθ(xt, t)− s′∇x̂0L, (33)

where s′ = (I +∆t · Juθ
)KT is constant and it can prede-

termined.
Hence, this concludes the proof that for appropriate guid-

ance scale s′, we can perform the controlled generation as
derived above.

10. Numerical Accuracy for Model Steering
In our controlled generation framework, we aim to steer
the generation process towards a reference sample xref

0 by
solving the modified ODE:

dx(t)

dt
= f(x(t), t) = uθ(x(t), t)− s′∇x̂0

L. (34)

The accuracy of this numerical integration is crucial, as
errors can accumulate over time, leading to deviations from
the desired trajectory. The smoothness of the modified ve-
locity field f(x(t), t) significantly impacts this accuracy.
Specifically, a smaller magnitude of

∣∣ d
dtf(x(t), t)

∣∣ reduces
local truncation errors. The following Proposition formal-
izes this relationship, stating that the numerical accuracy
improves as

∣∣ d
dtf(x(t), t)

∣∣ decreases.

Proposition 10.1. (Informal). Given the prior notations,
Assumptions, and Theorem, for any p-th order numerical
method solving Eq. (34), the accuracy of the numerical
solution increases as the magnitude of

∣∣ d
dtf(x(t), t)

∣∣ de-
creases.

Proof. To analyze the local truncation error, consider the
Taylor series expansion of the exact solution around time t
when integrating backward in time from t to t−∆t:

x(t−∆t) =x(t)−∆t f(x(t), t) +
(∆t)2

2

d

dt
f(x(t), t)

− (∆t)3

6

d2

dt2
f(x(t), t) +O

(
(∆t)4

)
.

The numerical method updates the solution using:

xt−∆t = xt +∆t ϕ(xt, t), (35)

where ϕ(xt, t) is the increment function. The local trun-
cation error τ is the difference between the exact solution
and the numerical approximation:

τ = x(t−∆t)− xt−∆t

=

[
x(t)−∆t f(x(t), t) +

(∆t)2

2

d

dt
f(x(t), t)

− (∆t)3

6

d2

dt2
f(x(t), t) +O

(
(∆t)4

)]
− [xt +∆t ϕ(xt, t)] .

The first p-order terms cancel out, and we have:

||τ || ≤
∥∥∥∥ (∆t)p+1

(p+ 2)!

dp+1

dtp+1
f(x(t), t)

∥∥∥∥ (36)

According to the Mean Value Theorem, we have

||τ || ≤ C(∆t)p+1 max
t∈[tn,tn+1]

∥∥∥∥ d

dt
f(x(t), t)

∥∥∥∥ (37)

where C is a constant depending on the method. The
global error e(t) = x(t)−xt accumulates these local errors
over the integration interval. Under standard assumptions
(e.g., Lipschitz continuity of f), the global error is bounded
by:

∥e(t)∥ ≤ K(∆t)p
(
eL(T−t) − 1

)
max
t∈[0,T]

∥∥∥∥ d

dt
f(x(t), t)

∥∥∥∥ ,
(38)

where K is a constant depending on the Lipschitz con-
stant L of f and the total integration time T .

As the magnitude of
∥∥ d
dtf(xt, t)

∥∥ decreases, both the lo-
cal truncation error and the global error decrease, enhanc-
ing the accuracy of the numerical solution. In the con-
text of controlled generation, ensuring that f(xt, t) changes
smoothly over time leads to more accurate integration and
better alignment with the reference point xref

0 . This insight
and prior assumptions require that the guidance scale s′ and
∆t be sufficiently smaller, where higher NFEs lead to the
lower ∆t. Hence, we increase the NFEs significantly to sta-
bilize the steering (see Section 17). By carefully selecting
s′, we ensure that the additional term s′ · ∇x̂0L does not in-
troduce excessive variability into f(x(t), t), maintaining the
smoothness necessary for accurate numerical integration.

11. Error Dynamics for Diffusion Models
In this section, we derive the error dynamics for diffusion-
based gradient-free guidance methods (e.g., MPGD and
RB-Modulation).

Proposition 11.1. In guided diffusion without manifold
projection, the error et = x̃

(t)
0 − xref

0 evolves as et−1 =

(1 − η)et + (1 − η)γt∆ϵt, where γt =

√
1−αt−1√
αt−1

and
∆ϵt = ϵθ(xt, t) − ϵθ(xt−1, t − 1). The error norm sat-
isfies ||et−1|| ≤ (1− η)||et||+ (1− η)γt||∆ϵt||, indicating
potential growth when γt||∆ϵt|| is large.

Proof. Assuming a quadratic loss L = 1
2 ||x̂

(t)
0 − xref

0 ||22,
the gradient is:

∇
x̂
(t)
0
L = x̂

(t)
0 − xref

0 , (39)

and the guided update becomes:

x̃
(t)
0 = x̂

(t)
0 − η∇

x̂
(t)
0
L (40)

= (1− η)x̂
(t)
0 + ηxref

0 , (41)

where η > 0 is the guidance strength. The error at
timestep t is then:

et = x̃
(t)
0 − xref

0 = (1− η)(x̂
(t)
0 − xref

0). (42)

Next, the DDIM update computes the subsequent noisy
sample:

xt−1 =
√
αt−1x̃

(t)
0 +

√
1− αt−1ϵθ(xt, t), (43)

where αt−1 ∈ (0, 1) controls the noise schedule, and
ϵθ(xt, t) is the noise prediction from the pretrained model.
At timestep t− 1, the clean sample prediction is:

x̂
(t−1)
0 =

xt−1 −
√
1− αt−1ϵθ(xt−1, t− 1)
√
αt−1

. (44)

This can be further simplified to:

x̂
(t−1)
0 = x̃

(t)
0 + γt∆ϵt, (45)

where γt =

√
1−αt−1√
αt−1

and ∆ϵt = ϵtheta(xt, t) −
ϵθ(xt−1, t − 1). Applying the guidance step at t − 1, we
have:

x̃
(t−1)
0 = (1− η)x̂

(t−1)
0 + ηxref

0 , (46)

and the error becomes:

et−1 = x̃
(t−1)
0 − xref

0 (47)

= (1− η)
(
(x̃

(t)
0 − xref

0) + γt∆ϵt

)
(48)

= (1− η)et + (1− η)γt∆ϵt. (49)

To understand the evolution of the error magnitude, fol-
lowing the triangle inequality, we get:

||et−1|| ≤ (1− η)||et||+ (1− η)γt||∆ϵt||. (50)

In idealized case (i.e., ∆ϵt = 0), the first term decays
exponentially if 0 < η < 1. However, in practice, ∆ϵt ̸= 0
and second term introduces a perturnation that affects the
convergence. In diffusion models, the noise schedule typi-
cally has αt increasing from near 0 to 1 as t decreases from
T to 1. Thus γt is large for large t (early steps) and de-
creases as t approaches 1. Meanwhile, ||∆ϵt||, the incon-
sistency in noise predictions, may be significantly early in
the process due to high noise levels and diminish later as
the sample refines. Hence, cumulative effect of these per-
turbations may prevent consistent error reduction across all
steps.

For reference, RFMs observes the straight trajectories
and second term minimizes by default as shown in the prior
theoretical and empirical analysis.

12. Extended Related Works

Generative Models. Recent advances in generative mod-
els, especially diffusion models like Latent Diffusion Model
(LDM) [44], GLIDE [35], and DALL-E2 [43], have sig-
nificantly improved photorealism compared to GAN-based
methods such as StackGAN [65] and BigGAN [4]. Pre-
trained diffusion models have been successfully applied to
diverse tasks, including image editing [17], personaliza-
tion [36], and style transfer [56], but their inference flex-
ibility remains limited, and they demand substantial re-
sources [14, 37]. Distillation-based strategies like Latent
Consistency Models [31] and Distribution Matching Dis-
tillation [63] address some limitations but lack control and
broader applicability. Rectified Flow Models (RFMs) [27,
28], exemplified by Flux1, SD3 [13], and InstaFlow [29],
show promise but face challenges in downstream tasks due
to inversion inaccuracies and other limitations. This work
addresses these gaps, extending RFMs to downstream tasks
in a training-, gradient-, and inversion-free manner.

1https://huggingface.co/black-forest-labs/FLUX.
1-dev

Conditional Sampling. Song et al. introduced noise-
aware classifiers for controlling sampling in diffusion mod-
els [12], but these require task-specific training. Classifier-
free guidance (CFG) [18] avoids this but necessitates an ad-
ditional pretraining stage. FreeDoM [64] and MPGD [15]
improve sampling control but remain computationally in-
tensive. Initial extensions of conditional sampling to flow
models face similar challenges, such as compute-heavy
gradient backpropagation and limited applicability to la-
tent space models. Our method, FlowChef, eliminates
these issues, seamlessly enabling gradient- and inversion-
free conditional sampling in latent-space models.

Inverse Problems. Inverse problems, dominated by
diffusion-based methods [11], include pixel-space solu-
tions such as DPS [8], Π-GDM [38], and BlindDPS [9].
PSLD [47] extends support to latent-space models, while
manifold-based methods [15, 51] further enhance perfor-
mance. Flow-based approaches like OT-ODE [39] and D-
Flow [2] improve speed and quality but remain resource-
intensive. Recent advancements like PnP-Flow [32] achieve
training- and gradient-free solutions for pixel-space mod-
els but face issues like smoothness artifacts. Existing so-
lutions are resource-intensive and unsuitable for large-scale
latent models. FlowChef leverages vector field properties
of RFMs to enhance performance, generalization, and scal-
ability for state-of-the-art models like Flux.

Image Editing. Image editing typically involves guid-
ing a model to combine a reference image with an edit-
ing instruction, often through inversion [17, 20, 21, 34].
Inversion-free methods like DiffEdit [10], InfEdit [61], and
TurboEdit [59] are rare, and none apply to flow models.
Most state-of-the-art methods rely on cross-attention mech-
anisms [3, 34], which we do not prioritize. Our approach,
FlowChef, introduces the first inversion-free image edit-
ing method for RFMs, achieving competitive results with
state-of-the-art methods.

13. Empirical Findings
In Section 4, we provided theoretical insights into
FlowChef along with an intuitive algorithm. To com-
plement the theory, we conducted an empirical analysis
on large-scale RFMs to validate the Assumptions, Propo-
sitions, Lemmas, and Theorems presented. The results are
summarized in Figure 6.

In Figure 6a, we compare the gradient cosine similarity
with and without backpropagation through the ODESolver
for InstaFlow and Stable Diffusion v1.5. For all denois-
ing steps, the gradients of SDv1.5 behave nearly randomly,
indicating that the stochasticity of the base model signif-
icantly impacts gradients, even when using the ODE sam-

https://huggingface.co/black-forest-labs/FLUX.1-dev
https://huggingface.co/black-forest-labs/FLUX.1-dev

0 5 10 15 20 25
Inference Steps (NFEs)

0.2

0.4

0.6

0.8

Co
sin

e
Si

m
ila

rit
y

InstaFlow
Stable Diffusion v1.5

(a) Gradient Similarity in InstaFlow
vs. Stable Diffusion v1.5.

0 20 40 60 80 100
Inference Steps (NFEs)

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Co
sin

e
Si

m
ila

rit
y

(b) Gradient Similarity in Rectified
Flow ++ model.

0 20 40 60 80 100
Guidance Steps / Inference Steps (NFEs)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Co
sin

e
Si

m
ila

rit
y

(c) Gradient Similarity in Rectified
Flow ++ during model steering.

0 20 40 60 80 100
Guidance Steps / Inference Steps (NFEs)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
ea

n
Sq

ua
re

d
Er

ro
r (

w.
r.t

. x
re

f
0

)

(d) Convergence in Rectified Flow ++
during model steering.

Figure 6. Empirical analysis of gradient similarity (a, b, and c) and convergence rate. (a) and (b) analyzes the gradients without model
steering. (c) contains the gradient similarity during the active model steering. And (d) shows the trajectory similarity at each timestep t
w.r.t. the inversion based trajectory.

pling process during inference. In contrast, for InstaFlow, as
denoising progresses (t→ 0), gradient alignment improves,
supporting our derivation in Lemma 4.2, which states that
as t→ 0, we achieve∇xt

≈ ∇x̂0
.

Further analysis was performed on the Rectified Flow++
model, which is designed for straight trajectories with zero
crossovers. As shown in Figure 6b, well-trained models ex-
hibit high gradient similarity even at the initial stages of de-
noising. However, as illustrated in Figure 6c, during active
steering, the gradient direction initially diverges before im-
proving. This behavior is also reflected in the convergence
plot in Figure 6d.

We hypothesize that this phenomenon arises due to the
proximity to the Gaussian noise space (p1 ∼ N(0, I)),
where model steering is more error-prone since minor ad-
justments can disproportionately affect future trajectories.
As denoising progresses and the distribution moves fur-
ther from the noise (p1), these errors diminish, and con-
vergence is achieved. These observations align well with
our theoretical predictions, further reinforcing the validity
of FlowChef.

14. Algorithms
This section provides an overview of the algorithms under-
pinning FlowChef for image editing and its comparison
to baseline methods for a comprehensive understanding.

Image Editing. As described in Section 4.2,
FlowChef can be easily extended to image editing.
Revisiting the core concept, FlowChef modifies random
trajectories to align with a target sample. Image editing
involves balancing similarity with the target sample while
introducing deviations to achieve desired edits.

Figure 3 and Section 17 illustrate how FlowChef pro-
gressively transfers characteristics from high-level structure
to finer details like color composition. However, editing re-

Algorithm 2: FlowChef vs. Baseline FreeDoM.

1 Input: Pretrained Rectified-flow model uθ, input
noise sample xT ∼ N(0, I), target data sample
xref
0 , and L cost function.

2 for t ∈ {T...0} do
3 v ← uθ(xt, t) dt← 1/T

4 xt ← xt.require grad (True)
5 for N steps do
6 v ← uθ(xt, t)

7 x̂0 ← xt + t · v
8 loss← L(x̂0, x

ref
0)

9 ∇xt
← grad(loss, xt) // Compute heavy BP

10 xt ← Optimize(xt, loss) // Lemma 4.2

11 v ← uθ(xt, t)

12 xt−1 ← xt+dt ·v // Theorem 4.3

13 RETURN x0

quirements vary by task. For example, adding an object
benefits from trajectory adjustments earlier in the denois-
ing process, while color changes require gradual learning
at later stages. We can optimize parameters for diverse
tasks using the generalized FlowChef, as detailed in Al-
gorithm 1.

To simplify the process, we extend FlowChef to sup-
port off-the-shelf editing tasks, such as those in the PIE-
Benchmark, as detailed in Algorithm 2. Assume a non-edit
region mask, Medit, derived from cross-attention or human
annotation. To steer the trajectory towards the desired edits,
we modify the velocity (v) using a classifier-free guidance
strategy:

Algorithm 3: : FlowChef optimized for a wide
range of image editing tasks.

1 Input: Pretrained Rectified-flow model uθ, input
noise sample xT ∼ N(0, I), target data sample
xref
0 , cedit is edit prompt, cbase is base prompt, M

is user-provided input mask, and L cost function.
2 for t ∈ {T...0} do
3 dt← 1/T

4 c← [cedit, cbase]
5 v ← uθ(xt, t, c)
6 vedit, vbase = v.chunk(2)
7 v = vedit + ¬mask · (vedit − vbase) · s
8 Medit ←M
9 xt ← xt.require grad (true)

10 if t < minT then
11 for N steps do
12 x̂0 ← xt + t · v
13 if t < max full stepsT then
14 Medit ← I

15 loss← L(x̂0, x
ref
0) ·Medit

16 xt ← Optimize(xt, loss) // Lemma 4.2

17 xt−1 ← xt + dt · v // Theorem 4.3

18 RETURN x0

v = vedit + ¬mask · (vedit − vbase) · s, (51)

where vedit corresponds to the edit prompt and vbase to
the base (negative) prompt. This adjustment ensures the tra-
jectory reflects the desired edits.

To maintain alignment of non-edited regions with the tar-
get sample, we modify the cost function as follows:

L(x̂0, x
ref
0) = ||(x̂0 − xref

0) ·Medit||22. (52)

Preserving the original image structure is crucial for ed-
its such as color or material changes. To achieve this, we
introduce the parameter max full steps T , which deter-
mines the number of steps that apply full FlowChef guid-
ance with an identity mask. This ensures structural preser-
vation while facilitating edits. Section 17 details a compre-
hensive reference for hyperparameters.

FlowChef vs. Baseline FreeDoM. Algorithm 2 com-
pares FlowChef to the baseline FreeDoM, a diffusion
model method that modifies the score function using a clas-
sifier guidance-like approach. FreeDoM requires estimat-
ing velocity and calculating gradients (∇xt) through back-
propagation via the ODESolver uθ, as marked in red. In
contrast, as highlighted in green, FlowChef eliminates the
need for backpropagation while still achieving convergence.

Hyperparameter OT-ODE D-Flow PnP-Flow FlowChef

Iterations / NFEs 200 20 50 200
Optimization per iteration 1 - - 1
Optimization per denoising - 50 - -
Avg. sampling steps - - 5 -
Guidance scale 1 1 1 500
Cost function L1 L1**2 L1 MSE
initial time (1 means noise) 0.8 - - -
blending strength - 0.05 - -
inversion × ✓ × ×
learning rate 1 1 1 1

Table 5. Hyperparameters for solving inverse problems using
pixel-space models.

Hyperparameter D-Flow RectifID FlowChef

Iterations / NFEs 10 4 100
Optimization per iteration - - 1
Optimization per denoising 20 400 -
Blending strength 0.1 - -
Guidance scale 0.5 0.5 0.5
Cost function MSE MSE MSE
Learning rate 0.5 1 0.02
Optimizer Adam SGD Adam
loss multiplier (latent/pixel) 0.000001 0.0001 / 100000 0.001/1000
inversion ✓ × ×

Table 6. Hyperparameters for solving inverse problems using
latent-space models (InstaFlow).

This simplification makes FlowChef a more efficient and
practical solution without sacrificing performance.

15. Experimental Setup

This section outlines the hyperparameters used for
FlowChef and baseline methods in solving inverse prob-
lems.

Pixel-Space Models. All evaluations were conducted us-
ing the Rectified Flow++ checkpoint. Since public imple-
mentations of OT-ODE and D-Flow are unavailable, we im-
plemented these methods manually based on the provided
pseudocode and performed hyperparameter tuning to ensure
optimal performance. Notably, DPS and FreeDoM hyper-
parameters are the same as the FlowChef. Table 5 pro-
vides a detailed overview of the hyperparameters used for
each baseline.

Latent-Space Models. For latent-space models, we ex-
tended D-Flow to the InstaFlow pretrained model, repur-
posed RectifID for inverse problems, and fine-tuned the hy-
perparameters for optimal results. The best-performing hy-
perparameters for each baseline are listed in Table 6. We
utilized their baseline implementations for diffusion model-
based approaches such as Resample and PSLD-LDM, mod-
ifying only the number of inference steps. Specifically, we
used 100 NFEs for Resample and 100/500 NFEs for PSLD.

Model Hyperparameters Chage Object Add Object Remove Object Change Attrbiute Chage Pose Change Color Change Material Change Background Change Style

FlowChef (InstaFlow)

Learning rate 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0 0.5
Max setps 50 50 50 50 20 30 50 50 30
Optimization steps 1 1 3 2 2 2 2 4 1
Inference steps 50 50 50 50 50 50 50 50 50
Full source steps 30 30 0 10 10 20 20 0 30
Edit guidance scale 2.0 2.0 2.0 4.5 8.0 8.0 4.0 3.0 6.0

FlowChef (Flux)

Learning rate 0.4 0.5 0.5 0.5 0.5 0.4 0.5 0.5 0.4
Optimization steps 1 1 1 1 1 1 1 1 1
Inference steps 30 30 30 30 30 30 30 30 30
Full source steps 5 5 0 2 5 3 5 0 5
Edit guidance scale 4.5 4.5 4.5 4.5 7.5 10.0 4.5 0.0 10.0

Table 7. Hyperparameter examples for which various editing tasks can be performed (following Algorithm 2). Notably, the
FlowChef (Flux) variant can be further optimized for task-specific settings that will follow Algorithm 1 with a careful selection of
hyperparameters.

Method NFEs CG Scale FID (↓) VRAM (↓) Time (↓)

DDIM 50 - 5.39 3.67 14.22
MPGD 50 1 4.24 6.56 25.01
MPGD 50 10 5.46 6.56 25.01
Oursw/ skip grad 50 1 19.28 6.56 24.95

RFPP (2-flow) 2 - 4.56 3.29 0.28
RFPP (2-flow) 15 - 4.29 3.36 2.75
Oursw/ backpropagation 15 5 2.77 17.98 12.79
Oursw/ skip grad 15 50 3.13 6.64 5.85

Table 8. Performance of Various guided sampling methods on Im-
ageNet64x64 with 32 batch size inference on A6000 GPU.

Method CLIP-I (↑) CLIP-T (↑) VRAM Time

FreeDoM 0.5343 0.2541 17GB 80 sec
MPGD 0.5285 0.2616 16GB 20 sec
RetifID 0.4583 0.1702 18GB 30 sec
D-Flow 0.4851 0.2591 23GB 5 sec
FlowChef(10 NFEs) 0.5044 0.2655 2 sec
FlowChef(30 NFEs) 0.5301 0.2600 7 sec
FlowChef(30 NFEs × 2) 0.5531 0.2478

14GB
12 sec

Table 9. Comparison of Various Classifier Guided Style Transfer.

An adorable cottage.

A steaming mug of hot chocolate with whipped cream.

RDFS-Rev FlowChef

Figure 7. Extending FlowChef to 3D multiview synthesis.

16. Extended Results

Classifier Guidance. To validate our findings from
Proposition 4.1, we conduct a toy study comparing classifier
guidance on two ODE sampling methods using pretrained
IDDPM and Rectified Flow++ (RF++) models on the Ima-
geNet 64x64. As reported in Table 8, skipping the gradient
in DDIM-based sampling increases the FID score, indicat-

Three pots on top of the table with blue, green, and green colors.

Four people dining at a restaurant and wearing red, blue, yellow, and
black hats from left to right.

Four people dining at a restaurant and wearing red, yellow, yellow, and
black hats from left to right.

Figure 8. FlowChef (Flux) multi object editing examples.

ing significant ϵ(t). Conversely, RF++ converges well and
improves the FID score. These empirical evidences further
bolster our hypothesis that Rectified Flow models observe
smooth vector field with the help of Proposition 4.1. Al-
though backpropagating through the ODESolver further im-
proves performance, it incurs higher computational costs as
highlighted.

Style Transfer. We conducted classifier-guided style
transfer experiments using 100 randomly selected style ref-
erence images paired with 100 random prompts. The ob-
jective was to generate stylistic images that align visually
with the reference style while adhering to the prompt. A
pretrained CLIP model was used for evaluation, and we re-
port both CLIP-T and CLIP-S scores [42]. For baseline
comparisons, we included diffusion-based methods Free-
DoM and MPGD and flow-based methods D-Flow and
RectifID, which were extended for this task. The back-

0 20 40 60 80 100
Percentage of Responses

FlowChef (Flux)

InfEdit

DiffEdit

Ledits++

47.0% 18.0% 35.0%

40.4% 18.2% 41.4%

24.2% 26.3% 49.5%

48.0% 20.0% 32.0%

Preference Scores by Method

Baseline Tie FlowChef (InstaFlow)

Figure 9. Human preference analysis for image editing.

bone was fixed to Stable Diffusion v1.5 (SDv1.5), with
FlowChef evaluated in its InstaFlow variant to ensure a
consistent comparison. Both quantitative and qualitative re-
sults are presented in Table 9, demonstrating the effective-
ness of FlowChef in this setup.

Multiobject editing & 3D generations. To highlight
the versatility and effectiveness of FlowChef, we ex-
tended our method to tackle multi-object image editing
and 3D multiview generation. Figure 8 demonstrates
FlowChef (Flux) performing complex multi-object edits,
such as simultaneously modifying two pots and hats. No-
tably, this capability relies on the base model’s ability to un-
derstand textual instructions effectively. FlowChef lever-
ages this strength of Flux, achieving edits without re-
quiring inversion, a significant advantage over traditional
methods. In Figure 7, we explore FlowChef’s multi-
view synthesis capability, inspired by Score Distillation
Sampling (SDS) [41]. By incorporating the core idea
of FlowChef for model steering into recent work on
RFDS [62], we evaluate its effectiveness for 3D view gen-
eration. While FlowChef does not improve inference
efficiency or reduce cost compared to RFDS-Rev [62], it
demonstrates competitive performance in generating high-
quality multiview outputs. These results underline the
adaptability of FlowChef, showcasing its potential for ad-
vanced generative tasks such as multi-object editing and 3D
synthesis, while maintaining the state-of-the-art quality ex-
pected from RFMs.

Human Evaluations (Image Editing). A human pref-
erence evaluation on randomly selected 100 PIE-Bench
edits (see Figure 9) shows FlowChef (InstaFlow) out-
performing DiffEdit and competing with InfEdit. Al-
though Ledits++ scored highest, it requires inversion, re-
sulting in higher VRAM and time requirements. Impor-
tantly, FlowChef on Flux achieves performance compara-
ble to Ledits++ without inversion. Comparisons with RF-
Inversion show that FlowChef reduces time by almost 50%
without needing inversion and achieves competitive perfor-
mance.

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10
.0

Guidance Scale (LR)

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Av
er

ag
e

LP
IP

S 5

10

15
20

253035404550

5

10

15

20

25

30

35

40

45

50

M
ax Steps

Figure 10. Hyperparameter sensitivity analysis.

17. Hyper-parameter Study
Figures 11, 12, and 13 present an analysis of the impact of
various hyperparameters on steering the InstaFlow model
using FlowChef. Figure 11 demonstrates that a lower
learning rate combined with a single optimization step is
insufficient to effectively steer the model. Optimal perfor-
mance is achieved with a learning rate of 0.1. Additionally,
Figure 12 shows that lower learning rates necessitate more
optimization steps to achieve convergence. Finally, Fig-
ure 13 illustrates how the denoising trajectory can be con-
trolled by adjusting the learning rate and optimization steps,
enabling recovery of the target sample with the desired ac-
curacy. This control is particularly critical for image editing
tasks, where striking the right balance between preserving
the reference sample and applying the editing prompt is es-
sential. Table 7 further highlights optimal hyperparameter
settings for image editing tasks, providing valuable guid-
ance for achieving high-quality edits. This study under-
scores the flexibility of FlowChef in adapting to diverse
use cases by tuning these parameters effectively.

Additionally, we plot the hyperparameter sensitivity for
FlowChef (InstaFlow)’s convergence rate w.r.t. guidance
scale and steps on 100 AFHQ-Cat images on latent inverse
problem (see Figure 10). We can observe that lower steps
require higher guidance scale and more steps require lower
guidance scale. Importantly, FlowChef observes a smooth
convergence that clearly indicates the robustness.

18. Qualitative Results
Figure 15 showcases additional qualitative examples of im-
age editing tasks. For tasks such as changing materials or
removing objects, FlowChef outperforms the baselines
significantly. However, some limitations are noted: while
FlowChef (InstaFlow) struggles to replace a cat with a
tiger, InfEdit handles this task effectively, and Ledits++ ex-
hibits difficulties. On the other hand, FlowChef (Flux)

lr = 0.01 lr = 0.02 lr = 0.05 lr = 0.1 reference

Figure 11. Effect of FlowChef learning rate with fixed 20 max steps and one optimization step on InstaFlow.

Opt. steps = 1 Opt. steps = 2 Opt. steps = 3 Opt. steps = 4 Opt. steps = 5 reference

Figure 12. Effect of FlowChef optimization steps with fixed 20 max steps and 0.02 learning rate on InstaFlow.

achieves superior results, though it replaces a dog with a
tiger instead of a lion in one instance. In the final exam-
ple, both Ledits++ and FlowChef successfully edit long
hair into short hair. Importantly, the results in Figure 15 are
presented without cherry-picking, using consistent hyperpa-
rameters for both baselines and FlowChef. Variability in
outcomes may still arise due to random seeds and fine-tuned
hyperparameter selection.

Figures 16, 17, 18, 19, 20, and 21 provide pixel-level
qualitative results for various inverse problems, spanning
inpainting, deblurring, and super-resolution tasks under
both easy and hard scenarios. Readers are encouraged
to zoom in to inspect these comparisons more closely.
For each task, we randomly selected 10 CelebA exam-
ples and evaluated various baselines. Across all diffi-
culty levels, FreeDoM, DPS, and PnPFlow demonstrate
better performance than D-Flow and OT-ODE. However,

FlowChef consistently outperforms all baselines, pro-
ducing sharp and visually appealing results where other
methods either fail outright or introduce excessive smooth-
ness. Hard scenarios pose challenges for all methods,
but FlowChef notably improves performance even under
these conditions. While FlowChef shows promise, future
work is needed to address potential adversarial effects and
further enhance robustness.

19. Limitations & Future Work
Limitations. While FlowChef represents a significant
leap in steering RFMs for controlled generation, it shares
some limitations with its baseline counterparts. Hyper-
parameter tuning remains a challenge, particularly due to
differences in trajectory behavior. For instance, while In-
staFlow trajectories are relatively linear, Flux.1[Dev] tra-
jectories exhibit non-linearity, necessitating careful tuning.

Max steps = 0 Max steps = 1 Max steps = 2 Max steps = 3 Max steps = 4 Max steps = 5 Max steps = 10 Max steps = 15 Max steps = 20

lr = 0.01
Opt. steps = 1

lr = 0.01
Opt. steps = 5

lr = 0.1
Opt. steps = 1

reference

Figure 13. Effect of various FlowChef’s steering parameters with increasing maximum optimization steps on InstaFlow.

a small white blue lamb standing in the grass.

Deblurring Super-resolution

a green lipstick is being splashed with red powder.

Figure 14. FlowChef (Flux) model failures on inverse problems
and image editing.

As shown in Figure 8, FlowChef (Flux) faces difficul-
ties in deblurring and super-resolution tasks, which we at-
tribute to the pixel-space loss and non-linear behavior of
the VAE model. Importantly, these limitations occur about
20%-25% of cases and can often be resolved by simply
adjusting the random seed. Furthermore, due to Flux’s
lack of true classifier-free guidance (CFG), Algorithm 3 oc-
casionally fails to perfectly execute color changes, some-
times producing the unaltered target image without reflect-
ing the edit (see Figure 8). Despite these minor limitations,
FlowChef still delivers state-of-the-art performance, mak-
ing these challenges opportunities for further refinement
rather than fundamental drawbacks.

Future Work. FlowChef opens a promising avenue for
steering RFMs effortlessly with guaranteed convergence for
controlled image generation. While this work extensively
evaluates FlowChef on image generative models, future
research should focus on expanding its capabilities to video
and 3D generative models, areas that remain largely unex-
plored. Additionally, the current implementation assumes
the availability of human-annotated masks for image edit-

ing. Automating this step with advanced attention mech-
anisms could make FlowChef a fully automated image
editing framework. We encourage the research community
to build upon this foundation to enhance its accessibility and
functionality.

Ethical Concerns. As with all generative models, ethical
concerns such as safety, misuse, and copyright issues ap-
ply to FlowChef [23, 24]. By enabling controlled gener-
ation with state-of-the-art RFMs, FlowChef can be lever-
aged for beneficial and harmful purposes. To mitigate these
risks, future efforts should focus on solutions such as image
watermarking, content moderation, and unlearning harmful
behaviors. While these issues are not unique to FlowChef,
addressing them will be key to ensuring its responsible use.

Input Ledits++ DiffEdit
Ours

(InstaFlow)InfEdit Ours
(Flux)

A dog lion is laying down on a white background.

a colorful wooden bird sitting on a branch with a green background

A lion in a suit sitting at a table with a laptop.

A cat tiger sitting next to a mirror

a woman with long short hair sitting in the sand at sunset

RF-Inversion RF-Solver* FlowEdit*

An illustration of an owl sitting on a branch in a cave.

Figure 15. Qualitative results on image editing. Additional qualitative comparisons of FlowChef with the baselines.

Box Inpainting

Degraded

OT-ODE

FreeDoM

DPS

D-Flow

PnPFlow

FlowChef
(ours)

Ground
Truth

Figure 16. Qualitative examples of various methods for easy box inpainting task on RF++.

Box Inpainting

Degraded

OT-ODE

FreeDoM

DPS

D-Flow

PnPFlow

FlowChef
(ours)

Ground
Truth

Figure 17. Qualitative examples of various methods for hard box inpainting task on RF++.

Deblurring

Degraded

OT-ODE

FreeDoM

DPS

D-Flow

PnPFlow

FlowChef
(ours)

Ground
Truth

Figure 18. Qualitative examples of various methods for an easy deblurring task on RF++.

Deblurring

Degraded

OT-ODE

FreeDoM

DPS

D-Flow

PnPFlow

FlowChef
(ours)

Ground
Truth

Figure 19. Qualitative examples of various methods for the hard deblurring task on RF++.

Super Resolution

Degraded

OT-ODE

FreeDoM

DPS

D-Flow

PnPFlow

FlowChef
(ours)

Ground
Truth

Figure 20. Qualitative examples of various methods for an easy super-resolution task on RF++.

Super Resolution

Degraded

OT-ODE

FreeDoM

DPS

D-Flow

PnPFlow

FlowChef
(ours)

Ground
Truth

Figure 21. Qualitative examples of various methods for the hard super-resolution task on RF++.

	Introduction
	Related Works
	Preliminaries
	Problem Formulation
	Cost Functions

	Proposed Method
	Error Dynamics of the ODEs
	FlowChef: Steering Within the Vector Field

	Experiments
	Linear Inversion Problems
	Pixel-space models
	Latent-space models.

	Image Editing

	Conclusion
	Supplementary Overview
	Proof of the Proposition
	Proof for Theorem
	Numerical Accuracy for Model Steering
	Error Dynamics for Diffusion Models
	Extended Related Works
	Empirical Findings
	Algorithms
	Experimental Setup
	Extended Results
	Hyper-parameter Study
	Qualitative Results
	Limitations & Future Work

