
Supplemental Material:
How To Make Your Cell Tracker Say: ”I dunno!”

A. Linear Assignment Formulation
Given two consecutive frames X t and X t′ , there are three possible associations for the cells in those two frames: A daughter
cell x′ ∈ X t′ is linked to a mother cell x ∈ X t, a daughter cell remains without a mother or a mother cell remains without
a daughter. The latter two cases are relevant e.g. if cells enter or leave the region of interest from across the frame border.
Technically, we we can consider the cases, were mother or daughter cells are not associated to any other cell as an association
to some fallback class ⊥ and denote the likelihood of a single cell appearing or disappearing as P(x′

j | ⊥) and P(⊥ | xi),
respectively. Given those probabilities, we denote the joint likelihood of observing detections X t′ given X t and some
assignment solution A as

P(X t′ | X t, A) =
∏

(xi,x′
j)∈A

P(x′
j | xi)

∏
xi /∈A

P(⊥ | xi)
∏
x′
j /∈A

P(x′
j | ⊥), (22)

where any cell not included in the assignment A is either an appearing daughter or disappearing mother. Defining wa :=
logP(x′

j | ⊥), wd := logP(⊥ | xi) and m,n as the number of appearing and disappearing cells respectively, we obtain the
linear assignment formulation from Equation (5) by taking the logarithm of our likelihood from Equation (22).

B. Tracking Cost Functions
The tracking algorithms used in this work are mainly distinguished by the cost function w, which they define. Here, we give
the remaining two cost functions, which were not introduced in the main paper, as well as some details on the Transformer-
based cost function and elaborate the connections between distance- and activity-based tracking and temperature scaling.
• In distance-based tracking, the cellular features are their positions in the image and the cost function is computed as

wL2(xi, x
′
j) =

λ

2
∥xi −x′

j ∥22, (23)

which is equivalent to assuming Brownian motion with variance λ−1, i.e. x′
j ∼ N (xi, λ

−1I).
• The activity-based tracking is similar to the distance-based tracking, but introduces an additional activity value αi for each

mother cell xi, which scales the variance of the Gaussian likelihood x′
j ∼ N (xi, αiλ

−1I)

wAC(xi, x
′
j) =

λ

2αi
∥xi −x′

j ∥22. (24)

The activity value is computed from the raw image values within the segmentation mask of xi. For details, please refer to
the original publication [32].

• In the overlap-based tracking, the cellular features are their segmentation masks and the cost function is computed as the
negative number of pixels in the overlap, i.e.

wOL(xi, x
′
j) = −|xi ∩x′

j | (25)

• The Transformer-based tracking algorithm Trackastra [12] defines a frame-to-frame cost function, but incorporates detec-
tions from multiple frames in a sliding window fashion. Given a sliding window of size ∆ ∈ N, Trackastra encodes shallow
input features x(t+δ)

i ∈ X t+δ with δ = 0, . . . ,∆ using two different functions fθ, gθ implemented as Transformer neural
networks. Given a set of cellular features X , fθ and gθ map those features to latent spaces Y = fθ(X ) and Z = gθ(X ),
such that Yi,Zi are the latent representations corresponding to a particular input feature X i ∈ X . Shallow features used
here are position, shape descriptors and image intensities. Frame-to-frame costs are then computed as

w(xi, x
′
j) =

1

2
∥Yi −Z ′

j∥22 −
1

2

(
∥Yi∥22 − ∥Z ′

j∥22
)
= −Y⊤

i Z ′
j , (26)

where Yi,Z ′
j are the latent representations of xi, x

′
j from consecutive frames, respectively, and Y,Z were computed on

the union of all cellular features X =
⋃∆

δ=0 X t+δ from the sliding window.



B.1. Brownian Motion & Temperature Scaling
To show that temperature scaling effectively scales the variance of the Brownian motion assumed by the distance- and
activity-based tracking algorithm, we consider Equation (20), plug in Equation (15) and absorb the temperature into a scaled
cost function:

Pi|jτ =
P τ
ij∑

k P
τ
kj

(27)

=
exp

{
− τw(xi, x

′
j)
}∑

xk∈X t
exp

{
− τw(xk, x′

j)
} (28)

=
exp

{
−w̃(xi, x

′
j)
}∑

xk∈X t
exp

{
−w̃(xk, x′

j)
} , (29)

where we define w̃(xi, x
′
j) := τw(xi, x

′
k). Now setting w = wL2 , we see that w̃(xi, x

′
j) = τλ

2 ∥xi −x′
j ∥22, which is

equivalent to assuming x′
j ∼ N (xi, (τλ)

−1I). Similarly, for w = wAC , we get that w̃(xi, x
′
j) = τλ

2αi
∥xi −x′

j ∥22, which
is equivalent to assuming x′

j ∼ N (xi, αi(τλ)
−1I). Finally, if we set w = ∥fθ(xi) − fθ(xj)∥pp, where ∥ · ∥p is the p-

norm and fθ some function projecting our cell features into some latent space, then this is equivalent to assuming fθ(x
′
j) ∼

GN (fθ(xi), τ
−1 I, p), where GN (µ, α, β) is the generalized normal distribution with location µ, scale α and shape β.

C. Parental Softmax
A practical issue that might arise from the DBMC approach is caused by appearing cells, that e.g. cross the image border.
In this case, the true probability for any detection xi from frame t to be the mother of the appearing cell x′

j should be zero.
However, the plain softmax distribution from Equation (15) cannot capture this case, as the denominator would become 0,
if the tracking algorithm were to correctly yield edge-wise probabilities exp

{
w(xi, x

′
j)
}
= 0. Thus, Gallusser and Weigert

[12] introduce the parental softmax

P((xi, x
′
j) ∈ A |x′

j ,X t,X t′) =
exp

{
w(xi, x

′
j)
}

1 +
∑

x∈X t
exp

{
w(x, x′

j)
} . (30)

by adding a constant to the denominator. From a statistical perspective, this might seem like an issue, as the parental softmax
distribution does not sum up to 1 anymore. In fact, however, this constant summand represents an unnormalized probability
for the implicit class ⊥ representing the lack of an adequate mother. The normalized probability of this choice can be
computed as

P((⊥, x′
j) ∈ A |x′

j ,X t,X t′) = 1−
∑
x∈X t

P((x, x′
j) ∈ A |x′

j ,X t,X t′). (31)

D. Bayesian Tracking Transformer
For the Bayesian Transformer-based tracking we trained Trackastra [12] using MC Dropout [11] at varying dropout proba-
bilities p ∈ {0.5, 0.25, 0.125}. In Figure 8, we present the ECE and sparsification as before in Section 4.1 & 4.2, but across
the tested dropout rates.

Our results indicate no clear trend, favoring neither lower nor higher dropout probabilities. For the ECE, especially
FP and FP+A show only slight variance in performance depending on the dropout probability. For sparsification, some
variance is noticeable, though only the FP method using entropy-based uncertainty estimation indicates a trend favoring
higher dropout probabilities. For the temperature scaled versions (FP+TS & FP+A+TS ) ECE seems to be improved by
a lower dropout probability, however an inverted trend is visible for sparsification, where high dropout probabilities achieve
higher accuracy improvements.

Given the recent advances in Bayesian deep learning, applying more sophisticated techniques like Laplace approximations
[24, 30] or variational inference [35] might further improve the performance of our Bayesian neural perturbation method.
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Figure 7. Relative runtime of our
different methods (cf . Table 1) com-
pared to the SM method as a func-
tion of the average number of cells
per frame. The SM method has
virtually the same costs as vanilla
uncertainty-unaware tracking. Leg-
end is the same as for Figure 10.
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Figure 8. Calibration and sparsification as dis-
cussed in Section 4.1 and 4.2 shown for the
Transformer-based tracking using Monte Carlo
dropout at varying dropout rates.
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Figure 9. Optimized temperature
τ of our SM+TS method plotted
against the empirical mean squared
displacement of cells based on the
ground truth tracking for each. The
dashed line depicts 1-to-1 corre-
spondence.
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Figure 10. Mean accuracy of tracking predictions per temporal resolution, sparsified at varying thresholds, which were computed as
quantiles over the respective sparsification criterion, i.e. either the edge-wise probability or the daughter-wise entropy.
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Figure 11. Calibration curves of all tested methods and datasets. Datasets are (a) BF-C2DL-HSC, (b) BF-C2DL-MuSC, (c) DIC-C2DH-
HeLa, (d) Fluo-N2DL-HeLa, (e) PhC-C2DL-PSC all taken from the Cell Tracking Challenge [25, 26] and, (f) Tracking-One-in-a-Million
dataset [34]. The gray dashed line depicts 1-to-1 correspondence, i.e. perfect calibration.



Table 2. Broad-brush overview of pros and cons of our methods for probabilistic cell tracking: Softmax’ing (SM), Feature Perturbation
(FP), Feature Perturbation with Assignment (FP+A) and Assignment Sampling (AS). We compare our methods in terms of calibration (cf .
Figure 5), ‘usefulness’ of the uncertainty estimates (cf . Figure 6), runtime overhead (cf . Figure 7) as well as technical considerations.

Method Pros Cons

SM • Calibrated and useful uncertainty if using TS
• Cheap
• Almost no modifications required

• Inexpressive uncertainty without TS

FP • Calibrated and useful uncertainty if using TS • Inexpressive uncertainty without TS
• Moderately expensive
• Requires noise distribution to perturb features

FP+A • Useful uncertainty even without TS • Expensive
• Requires noise distribution to perturb features

AS • Useful uncertainty even without TS • Moderately expensive

TS • Calibrated uncertainties • Requires annotated data


