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Supplementary Material

6. Implementation Details
This section provides additional details, including query-
centric inverse reinforcement learning (QIRL), Bi-Mamba-
enhanced decoder, loss function, and training specifics.

6.1. Query-Centric IRL
In our reward-driven intention reasoner, the IRL problem
is modeled as a Markov Decision Process (MDP). Given a
demonstrated trajectory (or path, if available), we discretize
it into a sequence of states on a 2D grid. Our QIRL frame-
work integrates Maximum Entropy IRL (MaxEnt IRL) with
a query-centric paradigm. Specifically, each grid cell is
treated as a state si, corresponding to the grid query Qsi

G
at the position si = (xi, yi). The action a represents move-
ment to an adjacent grid cell, and the process is assumed to
be deterministic.

Let D = {ω1, ω2, . . . , ωN} denote a set of demonstrations,
where each traversal (or plan) ωi consists of a sequence of
states ωi = {s1, s2, . . . , sH}, with H representing the plan-
ning horizon. The objective of IRL is to infer the reward
function R that explains these demonstrations [5]. MaxEnt
IRL [9] addresses this problem using the maximum entropy
principle, modeling the probability of a plan as:

P (ω|R) → exp

(
∑

si,ai→ω

R(si, ai)

)
. (1)

Consequently, solving the IRL problem can be formu-
lated as a Maximum-A-Posteriori (MAP) estimation, aim-
ing to maximize the joint posterior distribution of the expert
demonstrations. The log-likelihood is expressed as:

L(ε) = log (P (D, ε|R))

= log (P (D|R)) + log (P (ε)) ,
(2)

where ε represents the parameters of the reward neural net-
work. By ignoring the regularization term log(P (ε)), we
derive the gradient of the log-likelihood as:

ϑL(ε)

ϑε
=

ϑ log (P (D|R))

ϑε
=

ϑ log (P (D|R))

ϑR
· ϑR
ϑε

. (3)

The second term corresponds to the back-propagation of
the reward network, while the first term, as derived in [6],
is calculated as the difference between the state visitation
counts from the expert demonstrations and the expected vis-
itation counts induced by the learned reward distribution.

Once the reward function R is obtained, it provides the
action preferences for each grid cell. Leveraging this reward

Algorithm 1: Bi-Mamba Decoder Process
Input: Trajectory token QT ,

Dual mode token QM = {CLS1,CLS2}.
Output: Trajectory offset !Y , and probability p.

1 T = Norm([CLS1;QT ;CLS2])
2 x → Linearx(T)
3 z → Linearz(T)
4 for o in {Forward, Backward} do
5 x→

o → SiLU(Conv1do(x))
6 Bo → LinearB

o(x→
o)

7 Co → LinearC
o(x→

o)

8 !o → log(1 + exp(Linear!
o (x→

o) + Param!
o ))

9 Ao → !o ↑ ParamA
o

10 Bo → !o ↑ Bo

11 ho → 0, yo → 0
12 for i in {0, . . . M-1} do
13 ho = Ao[:, i, :, :]↓ ho+

14 Bo[:, i, :, :]↓ x→
o[:, i, :,None]

15 yo[:, i, :] = ho ↑ Co[:, i, :]

16 end
17 end
18 y→

Forward → yForward ↓ SiLU(z)
19 y→

Backward → yBackward ↓ SiLU(z)
20 T→ → LinearT(y→

Forward + y→
Backward) + T

21 [CLS→
1;Q

→
T ;CLS→

2] → Norm(T→)
22 CLS→ → SelfAttn(CLS→

1 + CLS→
2)

23 p → SoftMax(LinearQM (CLS→))

24 !Y → LinearQT (Q→
T )

distribution, we can generate multiple plausible intention
sequences by sampling rollouts, following the approach in
[7]. These intention sequences serve as reasoning priors for
subsequent trajectory prediction.

6.2. Bi-Mamba-Enhanced Decoder
We detail the Bi-Mamba decoding process. Given the tra-
jectory token QT ↑ R

K↑Tf↑C and the dual mode token
QM = {CLS1,CLS2} ↑ R

K↑2↑C , we first concatenate
these inputs, followed by a normalization layer, to form a
sequence token T ↑ R

K↑(Tf+2)↑C . This sequence token is
then passed into the bidirectional Mamba model [8].

Specifically, in the Mamba architecture [1], the struc-
tured state-space model (SSM) is represented as a contin-
uous system defined by (! ↑ R

K↑Tf↑C ,A ↑ R
C↑D,B ↑

R
K↑Tf↑D,C ↑ R

K↑Tf↑D), where D represents the di-
mension of the hidden state. To enable further processing,
this continuous system needs to be discretized into its coun-
terpart (A ↑ R

K↑Tf↑C↑D,B ↑ R
K↑Tf↑C↑D,C).



We begin by applying a linear projection to the normal-
ized sequence token, yielding the state vector x and the gate
vector z. The state vector x is then processed in both for-
ward and backward directions. For each direction, x is
encoded via a 1-D CNN and subsequently projected into
(Bo,Co,!o). Through a series of transformation opera-
tions, the discretized matrices Ao and Bo are generated and
utilized in the SSM’s recurrent process to compute the bidi-
rectional outputs yForward and yBackward. These outputs are
gated by z, integrated with a residual connection to the orig-
inal sequence token, and normalized, ultimately producing
the updated dual mode tokens and sequential trajectory to-
kens. Finally, a self-attention layer is applied to fuse the
mode features, followed by a linear projection and a soft-
max operation to compute the probability. Additionally, the
trajectory offset is derived through a simple linear projec-
tion. The entire decoding process is detailed in Algorithm 1.

6.3. Loss Function
We present the training loss with detailed mathematical for-
mulations, encompassing the Occupancy Grid Map (OGM)
loss, regression loss, and classification loss.
Occupancy Grid Map Loss. Let the output of the OGM
generator be O ↑ R

H↑W↑Tf and the Ground Truth (GT)
occupancy grid be OGT ↑ R

H↑W↑Tf . We employ a modi-
fied focal binary cross-entropy loss [4], expressed as:

LOGM = ↓ 1

n↓

H↑W∑

i=1

{(oi)µ(1↓ oGT
i )ε log(1↓ oi)

+ (1↓ oi)
µ(oGT

i )ε log(oi)},

(4)

where oi ↑ O is the predicted occupancy value for each
grid cell, and oGT

i ↑ OGT is the corresponding GT label. A
value greater than 0.85 is considered a positive hypothesis.
The total number of positive classes is denoted as n↓, and
the focusing factors are set to µ = 2 and ϖ = 4.
Regression Loss. Given the trajectory proposals Y ↑
R

K↑Tf↑2, the final predicted trajectories Y ↑ R
K↑Tf↑2,

and the GT trajectory Y GT ↑ R
Tf↑2, the regression loss

is calculated using a modified smooth ϱ1 loss (Huber loss)
with a Winner-Takes-All (WTA) strategy. Among the K
trajectories, we identify the one with the minimum Eu-
clidean distance to the GT as the positive trajectory, denoted
Y

↓

and Y ↓, respectively. The regression loss is then com-
puted as:

LREG =
1

Tf

(
↔H(Y

↓ ↓ Y GT)↔1 + ↔H(Y ↓ ↓ Y GT)↔1
)
,

(5)
where H applies the Huber function element-wise to ςY as:

H(ςYi) =

{
0.5↔ςYi↔22 if ↔ςYi↔2 < 1,

↔ςYi↔2 ↓ 0.5 otherwise,
(6)

where ↔ · ↔1 and ↔ · ↔2 represent the ϱ1-norm and ϱ2-norm,
respectively.
Classification Loss. We adopt a max-margin loss for clas-
sification as proposed in [2]. Let p ↑ R

K↑1 denote the pre-
dicted probabilities for each trajectory. The positive class p↓
is determined by identifying the trajectory whose endpoint
is closest to the Ground Truth (GT) in terms of Euclidean
distance. The classification loss is then formulated as:

LCLS =
1

K ↓ 1

∑

pi ↔=p→

max(0, pi ↓ p↓ + φ), (7)

where pi ↑ p, i = 1, 2, . . . ,K denotes the probability of
each trajectory, and φ is the margin which is set to 0.2.

6.4. Training Details
For the Argoverse dataset, the number of modes is set to
K = 6, while for the nuScenes dataset, K = 10. All hidden
feature dimensions are configured as C = 128. The total
model size is approximately 5.2M parameters. The model
is trained end-to-end on eight GPUs with a total batch size
of 128 for 40 epochs. We adopt the AdamW [3] optimizer
with a weight decay coefficient of 1 ↗ 10↗4. The learning
rate is initialized at 1 ↗ 10↗4 and is gradually reduced to
1 ↗ 10↗5 after 30 epochs. Note that no data augmentation
is applied during the training process.

7. Additional Qualitative Results
This section presents additional qualitative results for chal-
lenging cases from the Argoverse validation set, as illus-
trated in Fig. 1. The first three rows demonstrate that our ap-
proach effectively captures multimodality, successfully pre-
dicting multiple plausible trajectories while considering the
scene layout in various complex scenarios. In the final row,
when the motion trend is clear, our model reliably follows
the trend to produce reasonable predictions. Notably, even
in situations where the agent might enter a parking lot, as
shown in the last column, the model can still provide accu-
rate and plausible trajectory predictions.
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