HIiERO: understanding the hierarchy
of human behavior enhances reasoning on egocentric videos

Supplementary Material

Sec. A provides further details on the datasets and tasks
used in this work. Sec. B presents additional implemen-
tation details and a discussion of some key design choices
behind HiERO. Sec. C evaluates different clustering algo-
rithms for HiERO on the Step Grounding and Procedure
Learning tasks. Sec. D discusses the unsupervised emer-
gence of procedural steps in HIERO’s features space. Sec. E
analyzes the impact of using a more informative backbone
in the previous SOTA on the EgoProcel. benchmark. Fi-
nally, Sec. F presents additional qualitative results on the
Step Localization task.

A. Dataset and task details
A.1. EgodD

Ego4D is a large scale egocentric vision dataset with 3670
hours of daily-life activities captured from 931 subjects
around the world. Videos are annotated with fine-grained
textual descriptions of the activities performed by the cam-
era wearer or other participants in the scene, e.g., “#C C
stirs food in a frying pan with a spoon in his right hand”,
and with task-specific annotations on a subset of the videos
for a wide range of tasks, including episodic memory, spa-
tial and temporal grounding of the interactions, forecast-
ing, etc. We focus our analysis on two benchmark, namely
EgoMCQ and EgoNLQ.

EgoMCQ. EgoMCQ is a development benchmark intro-
duced with EgoVLP [29] to validate the quality of video-
language pretraining models. It features 39% multiple-
choice questions generated from Ego4D annotations. Given
a textual query and five candidate video clips, the task is to
identify the correct clip. Candidates may belong to the same
video (intra-video) or from different videos (inter-video).
Performance is evaluated in terms of accuracy.

EgoNLQ. EgoNLQ is a temporal grounding task that re-
quires multi-modal video and language reasoning. Given a
textual query from a set of predefined templates, the goal
is to identify the temporal boundaries (start and end times-
tamps) of the video segment that answers the query. The
benchmark includes 13.6k / 4.5k / 4.4k queries in the train,
validation and test splits respectively. We follow previ-
ous works in video-language pre-training [29, 39, 57] and
evaluate HiERO on this task using VSLNet [56] as ground-
ing head, using the same hyper-parameter tuning recipe as
EgoVLP [29] and reporting results on the validation set. As

for EgoNLQ, performance is evaluated in terms of Top-1
and Top-5 Recall at different Intersection over Union (0.3
and 0.5) between the predicted and the ground truth seg-
ments.

A.2. Goal-Step

Goal-Step [48] extends the Ego4D dataset with annotations
of hierarchical activity labels, identifying goals, steps and
substeps in procedural activities. It provides dense annota-
tions for 48k procedural step segments (480 hours), from a
taxonomy of 501 labels. We evaluate HIERO on the Step
Grounding and Step Localization tasks.

Step Grounding. Step Grounding is a temporal ground-
ing task, in which the goal is to recognize the temporal
boundaries of a procedural step given its description in nat-
ural language. For supervised experiments we use the same
architecture of the baseline (VSLNet [56]) with the same
hyper-parameters and report performance as the average of
8 runs. When using EgoVLP features we extend the number
of samples in the input sequence from 128 to 256. Perfor-
mance is evaluated in terms of Top-1 and Top-5 Recall at
different Intersection over Union (0.3 and 0.5) between the
predicted and the ground truth segments.

Step Localization. Step Localization is more closely re-
lated to action segmentation. Given a long video, the goal
is to find all the procedure steps in the video with their cor-
responding start/end time and label according to the Goal-
Step taxonomy. Models are trained and evaluated on steps
and substeps without distinctions. The supervised mod-
els use ActionFormer [55] as localization head, with base
learning rate of 2e-4 and training for 32 epochs with linear
warm-up for 16 epochs. Performance is evaluated in terms
of mAP at different Intersection over Union (IoU) thresh-
olds between the predicted and the ground truth segments.

A.3. EgoProcelL

EgoProceL [4] collects multiple egocentric vision datasets
focusing on procedural tasks that require multiple
steps, e.g., Preparing a salad or Assemblying a PC:
MECCANO [41], Epic-Tents [21], CMU-MMAC [10],
EGTEA [28] and PC Assembly/Disassembly [4]. Table 6
reports the number of videos and key-steps in each task
of the dataset. Annotations assign each video frame to a
specific key-step of the corresponding task. ~ We eval-
uate HiERO on the Procedure Learning task, following



Task Videos Count  Key-steps Count
PC Assembly [4] 14 9
PC Disassembly [4] 15 9
MECCANO [41] 17 17
Epic-Tents [21] 29 12
CMU-MMAC [10]
Brownie 34 9
Eggs 33 8
Pepperoni Pizza 33 5
Salad 34 9
Sandwich 31 4
EGTEA+ [28]
Bacon and Eggs 16 11
Cheese Burger 10 10
Continental Breakfast 12 10
Greek Salad 10 4
Pasta Salad 19 8
Hot Box Pizza 6 8
Turkey Sandwich 13 6

Table 6. Number of videos and key-steps in EgoProceL [4].

the same evaluation protocol of previous works [4, 5, 8].
Specifically, we compute framewise step assignment and
evaluate the F1-score and Intersection over Union (IoU) be-
tween the predicted steps and the ground truth labels for
each step separately. The Fl-score is computed as the har-
monic mean of precision and recall. Precision is the propor-
tion of correctly identified key-step frames out of all frames
predicted to be key-steps, while recall is the proportion of
correctly identified key-step frames out of the total number
of actual key-step frames. Predictions and ground truth la-
bels are matched using the Hungarian algorithm, following
previous works [4, 8].

B. Additional implementation details

HiERO follows an encoder-decoder architecture with three
stages, each comprising three layers of TDGC [38], with
hidden feature size 768 and the threshold for temporal graph
connectivity d is set to 1. Input features are first projected
to size 768 using a linear layer. For L., and Ly, we set
the temperature parameter to 7 = 0.05. When evaluating
HiERO on EgoMCQ, we assume that only a single func-
tional thread is present in the input video, given the short
duration of the clip, and disable the functional threads clus-
tering of the decoder.

Trainable EgoMCQ
Strategy Params Inter  Intra
Frozen 20.10 M 84.2 46.0
LoRa [18] 20.99 M 88.2 49.7

Full Fine-Tuning 86.47M 90.3 533

Table 7. Comparison of different fine-tuning strategies for the
text-encoder of HIEROQ, using Omnivore features and measuring
performance on EgoMCQ. Full fine-tuning significantly improves
accuracy.

Text-encoder fine-tuning. EgoVLP [29] and LaV-
iLa [57] were trained for video-text alignment. Therefore,
when building HIERO on these backbones we reuse their
respective text encoders, with no additional training.
Instead, Omnivore was not trained for video-text align-
ment and does not have a text encoder. In this case, we
bootstrap the text encoder of HiERO from a pretrained
DistilIBERT [43] and fine-tune it during the the training
process. We experiment different strategies to fine-tune
the text encoder, using LoRa [18] to reduce the number
of trainable parameters or fully updating the text encoder,
as shown in Table 7. While LoRa provides a significant
improvement compared to the frozen text encoder, the gap
with the full fine-tuning is consistent. Remarkably, with
little computational overhead (training lasts less than 20
GPU hours), HiERO reaches performance close to that of
EgoVLP, despite not being trained end-to-end on Ego4D.

A EgoVLP [29] | LaViLa[57] | HiERO (EgoVLP)
Inter Intra Inter Intra | Inter Intra
N/A (paper) ‘ 90.6 572 ‘ 945 63.1 ‘ — —
0 90.7 534 939 579 | 89.0 52.4
1 91.0 52.5 94.1 56.7 | 90.9 574
2 90.8 48.7 93.6 525 | 913 58.8
4 89.9 422 93.1 448 | 91.8 59.5

Table 8. Impact of the additional context window on EgoMCQ
Accuracy (%). The first row refers to the original results, as re-
ported in their respective papers.

Impact of the context window in EgoMCQ. HiERO is
built on dense pre-extracted features from fixed size seg-
ments (16 frames) of the video, using a pre-trained back-
bone, e.g., EgoVLP [29] or LaViLa [57]. Each segment
is mapped to a node of the input graph G. We adapt the
evaluation process for HIERO to work with pre-extracted
features. Specifically, when evaluating HIERO on bench-
marks that require a fixed size input, e.g., EgoMCQ, the
nodes correspond to all video segments that fall between the
start ¢, and end timestamps ¢, of the input. Since clips in
EgoMCQ are very short (0.84s on average), we slightly ex-
tend the clip segment by a context window A to provide ad-
ditional temporal context and ensure and the resulting graph
has a reasonable number of nodes for processing. We adapt
EgoVLP and LaVilLa to our setting, i.e., using dense fea-
tures extracted from video segments with additional tempo-
ral context, and evaluate the impact of this additional tem-
poral context on EgoVLP and LaViLa in Table 8, show-
ing that this additional context does not trivially translate to
better performance on this benchmark. In contrast, HIERO
is trained to exploit such additional temporal context and
achieves best performance when used in combination with
a larger input window (A = 4). At the same time, HIERO
is quite robust even to shorter context windows.
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« B Inter Intra
1 all 91.8 59.5
1 4 91.8 574

16 92.0 58.5

all 915 59.5
4 91.5 56.5
16 919 582
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Table 9. Ablation on the size of the video-narrations alignment
window. For 3, all means that all narrations from the same video
that are not part of the positives set are considered as negatives.

Video-Narrations alignment window. We evaluate in
Table 9, different choices for the « and 3 parameters that
control the size of the alignment window in L,,,. « con-
trols the window size for positive samples, with higher val-
ues resulting in narrower windows. [ controls the win-
dow for sampling negatives narrations from the same video.
Higher values indicate larger windows, with all meaning
that all narrations from the videos are taken as negative, ex-
cept the ones that fall inside the positives window. The «
parameter has little impact on both inter and intra accuracy.
The § parameter has a more noticeable impact on perfor-
mance, with best results when all intra-video narrations are
used as negatives.

B.1. Additional details on the Cut&Match module

The Cut&Match module updates the connectivity of a video
graph G in the HiERO architecture to connect regions, i.e.,
video segments, that may be temporally distant but encode
functionally related actions. This is achieved by grouping
the graph nodes into K different partitions based on fea-
tures cosine similarity using spectral clustering. As a re-
sult, the input graph G is partitioned into K sub-graphs
{G(I’iﬁl, . ,g?;;} Temporal reasoning is implemented on
each sub-graph separately and nodes are then mapped back
to the original graph.

Approximated graph partitioning. To efficiently imple-
ment the graph partitioning step on a batch of graphs, we
approximate node partitioning by uniformly sub-sampling
each graph to a fixed number of nodes based on the node
timestamps. This allows to effectively batch all the opera-
tions involved in the graph partitioning step, i.e., eigende-
composition of the Laplacian matrix and clustering, on all
the graphs in the batch, regardless of their number of nodes.
Spectral clustering is applied on the sub-sampled graphs
and the cluster assignments are propagated to the original
graph: each node in the original graph is assigned the label
of the temporally closest node in the subsampled graph.

B.2. Zero-shot procedural tasks implementation

HiERO can address several procedural tasks in zero-shot by
framing them as a graph clustering problem. We take graphs
from different depths of the architecture depending on the

Features Algorithm mloU@0.3 mloU@0.5
R@l R@5 R@l R@5
EgoVLP KMeans (L2) 1037 24,65 685 1646
EgoVLP KMeans (Cos.) 897 2321 591 15.15
EgoVLP Spectral 10.73 2470 7.38 16.53
Ours (EgoVLP) KMeans (L2) 9.87 2421 646 1571
Ours (EgoVLP) KMeans (Cos.) 1035 2485 693 1627
Ours (EgoVLP) Spectral 11.57 2741 7.87 18.70

Table 10. Impact of different clustering algorithms on the Step-
Grounding task on Egod4D Goal-Step [48]. We evaluate the
baselines and HiERO using KMeans and Spectral Clustering.

task. For tasks that require video-language matching, such
as step grounding or localization, we take the output of the
last layer as the other layers are not language aligned. For
tasks where this constraint is not present, e.g., procedure
learning on EgoProceL, we use features from deeper lay-
ers. Clustering is computed using the Spectral Clustering
implementation from scikit-learn.

B.3. Features extraction with HIERO

On the Ego4D [17] dataset, we utilize the official
omnivore_video_swinl features and extract dense fea-
tures from 16-frame windows with a stride of 16 frames us-
ing the EgoVLP [29] and LAVILA [57] backbones. We fol-
low the same procedure to extract features for the datasets
in the EgoProceL [4] benchmark. When using HiERO as
a features extractor, e.g., to train VSLNet [56] for the Step
Grounding task, we take features from the output layer of
the decoder. HIERQO’s features have size 768 and maintain
the same temporal granularity of the input features.

C. Comparison between clustering algorithms

Our approach builds a similarity graph from the video seg-
ments and discovers functional threads as strongly con-
nected regions of the graph. In this context, spectral clus-
tering groups segments and actions that may not be close
in terms of euclidean or cosine distance but are linked
through similar actions, forming a strongly connected re-
gion of the graph. We show the effectiveness of this design
choice in Table 10 on the Step Grounding task from Goal-
Step [48], comparing Spectral Clustering with KMeans us-
ing euclidean and cosine distances between the node em-
beddings. On the EgoVLP baseline, the two algorithms
have similar performance. Similarly, we evaluate different
clustering algorithms on EgoProceL in Table 11.

D. Procedure step emergence in HIERO

We evaluate the emergence of high-level functional threads
in HIERO by analyzing the distribution of the textual em-
beddings for narrations and key-step labels from Goal-Step.
For each ground truth (Fig. 5a) or zero-shot step predic-



Method Algorithm _Average  CMU-MMAC[10]  EGTEA [2§] MECCANO [4]  EPIC-Tents [21] = PCAss.[4]  PC Disass. [4]
FI ToU FI ToU FI IoU FI ToU Fl ToU FI IoU FI ToU
Omnivore K-Means 384 20.8 | 389 22.1 361 170 384 20.2 42.0 22.8 349 202 399 227
Omnivore Spectral  39.1 22,0 | 44.7 26.8 371 192 360 19.0 40.8 21.9 357 215 403 235
EgoVLP KMeans  40.6 22.0 | 46.6 28.2 373 173 329 16.1 40.1 20.9 390 215 473 28.1
EgoVLP Spectral 400 219 | 49.2 31.0 366 183  33.1 16.1 37.4 19.2 382 208 454 256
Ours (Omnivore) K-Means 4377 242 | 469 27.3 38.6 184 439 24.4 45.2 25.1 434 237 440 26.1
Ours (Omnivore) Spectral ~ 44.0 245 | 472 27.7 397 199 416 22.1 453 24.3 437 251 463 27.9
Ours (EgoVLP) K-Means 442 247 | 502 30.5 404 198 395 20.4 41.8 222 443 249 489 303
Ours (EgoVLP) Spectral ~ 44.5 253 | 535 34.0 397 196  39.8 203 39.0 20.3 49 256 499 321
Table 11. Comparison of different clustering strategies on Omnivore and EgoVLP features [4].
Zero-Shot Linear Probing Context CMU MEC. PC Ass. PC Dis. Avg.
Method (Stride)
Top-1  Top-5 Top-1 Top-5 IoU Fl1 IoU FI IoU Fl1 1IoU FlI IoU
EgoVLP 1011 2947 2522  53.08 - 2(15) 365 188 392 202 337 179 322 169 354 185
Ours (EgoVLP) 1203 3228 3022 5896
OV 215 354 187 351 175 228 120 328 182 315 166
Table 12. Key-step classification accuracy on Goal-Step [48], ov 4 316 201 369 183 330 188 310 164 331 184
ovt 4@) 316 175 333 178 320 174 349 190 329 179

using an oracle for step and substep detection. Steps and substeps
are more easily recognizable in the HiERO feature space, despite
no specific supervision.

(a) Ground truth steps (b) Predicted candidate steps

Figure 5. Features distribution of narrations and procedural
steps in Goal-Step [48]. Dots and stars represent the textual em-
beddings of the narrations and key-step labels, respectively, while
the colors indicate the step to which the narrations are assigned.

tion (Fig. 5b), we collect all the narrations within the corre-
sponding temporal window. Our results show that HIERO
generates candidate steps where narrations are more tightly
associated with the predicted key-step and form more dis-
tinct clusters, suggesting that narrations within the same
step are semantically closer, irrespective of the granular-
ity of the steps defined in the taxonomy. To show that
HiERO features are more aligned with the key-step tax-
onomy despite no specific supervision, we train a linear
probe on its features to predict the key-step label given the
corresponding trimmed video segment (Table 12). Com-
pared to EgoVLP, HiIERO improves noticeably the align-
ment between the visual features and the key-steps taxon-
omy (+7.02% top-1 accuracy), showing the steps and sub-
steps are more easily recognizable in the HIERO’s feature
space.

Table 13. OPEL [8] with Omnivore backbone, comparing dif-
ferent temporal context windows. OV: Omnivore backbone. OV1:
frozen Omnivore backbone.

E. OPEL with Omnivore backbone

The Omnivore baseline significantly outperforms the previ-
ous SOTA on EgoProceL.. We suggest that two main factors
could explain the performance gap: (i) the different back-
bone and pre-training strategies used by OPEL (ResNet-
50) and Omnivore, and (ii) different temporal contexts used
for feature extraction. We replace the ResNet-50 backbone
in OPEL with Omnivore, varying the temporal context and
stride used for features extraction (Table 13). The two back-
bones show comparable performance, with an improvement
observed as the temporal context increases. We were unable
to evaluate larger context windows due to memory over-
flows in the training process. In addition, we show in Fig. 6
the features distribution of Omnivore against OPEL. De-
spite not being trained on MECCANO, Omnivore features
exhibit quite clear clusters corresponding to the ground
truth step labels. We argue that this behavior is the result of
Omnivore being trained for action recognition on Kinetics-
400.

F. Additional visualizations

Fig. 7 shows additional qualitative results on the Step Lo-
calization task, comparing our approach with EgoVLP [29].
We observe that most failure cases are associated to mis-
matches between the temporal granularity of the predictions
and the ground truth, or to confusion between semantically
similar steps or sub-steps.



(b) Omnivore Features

Figure 6. Features distribution of Omnivore and OPEL on MECCANO [41], with dots representing different video segments, and
colors encoding the ground truth step labels. Despite not being trained on MECCANO, Omnivore features show a quite distinct separation
between segments of the same action (same color).
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Store ingredients into a... Wash spoon in kitchen sink Return ingredients to... Add salt to recipe
[ Wash hands N Move pan for miscellaneous...

(b) Video 2 (f4cc5fdc-£64£-4dd7-9b95-61db9bbf33d5)
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[ Store ingredients in...

(d) Video 4 (acc6839e-9d6d-46db-921b-51812834d3b2)

Figure 7. Failure cases on the Zero-Shot Localization task on Goal-Step [48], showing the ground truth steps, the predictions obtained
by clustering the EgoVLP and HiERO features and the middle frame of each step from the ground truth. We find that most cases of failure
are related to a mismatch between the granularity of ground truth steps and predictions. In Video 1 (Fig. 7a), both EgoVLP and HiERO
detect the most occurring step (" “Bake or roast ingredients in oven”), but EgoVLP is breaking the segment into more clusters and both
methods confuse it with a similar step ( “Put the dough on the baking tray”). In Video 2 (Fig. 7b), both EgoVLP and HiERO group
the initial part of the video in a single long step (I “Peel yam™). In the second half of the video, HIERO predicts more fine-grained steps
than the ground truth, e.g., (! “Wash potato in water”) rather than ( “Cook or prepare vegetable”). A similar issue appears in Video 3
(Fig. 7c), in which there is a mismatch between the step ground truth, e.g., ('8 “Boil noodles in water”) and (M “Drain noodle”) and the
predicted finer steps. Video 4 (Fig. 7d) shows a more significant failure case where both methods predict many more steps than in the
ground truth.
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