
A Constrained Optimization Approach for Gaussian Splatting from
Coarsely-posed Images and Noisy Lidar Point Clouds

Jizong Peng1∗, Tze Ho Elden Tse2∗, Kai Xu2, Wenchao Gao1, Angela Yao2

1dConstruct Robotics 2National University of Singapore
{jizong.peng,wehchao.gao}@dconstruct.ai {eldentse,kxu,ayao}@comp.nus.edu.sg

In this supplemental document, we provide:
• details of dataset acquisition and pre-processing (Sec A);
• derivation of intrinsic refinement (Sec B);
• details of exposure compensation module (Sec C);
• additional analysis on test time adaptation (Sec D);
• details of line intersection-based depth estimation

(Sec E);
• extended implementation details and discussion (Sec F);
• supplementary experimental results on GarageWorld

dataset (Sec G);
• additional qualitative comparison on Waymo dataset

(Sec H).

A. Dataset acquisition and pre-processing
In this section, we provide the configuration, calibration,
and synchronization details of our SLAM hardware setup
as well as the main pre-processing steps for the captured
images.

Figure 1. Key components of our SLAM hardware setup. The
device includes a 64-channel mechanical Lidar on top, with four
RGB cameras positioned at various angles to provide a complete
360-degree view. An IMU sensor is located directly beneath the
Lidar. (a) System top-down view (b) front view.

∗Equal contribution

Data acquisition: As illustrated in Fig. 1, Our self-
developed device comprises an Ouster OS1-64 Lidar, four
Decxin AR0234 cameras with wide-angle lenses, and a
Pololu UM7 IMU. The Lidar is positioned at the top, with
the IMU located directly beneath it. The IMU provides 9-
DOF inertial measurements including rigid body orienta-
tion, angular velocity, and acceleration. These data are used
in Lidar odometry optimization and Lidar points deskew-
ing. The four wide-angle cameras are utilized to capture
RGB features for 3D scene reconstruction.

The four cameras are parameterized using fisheye mod-
els. We calibrate them by employing OpenCV [1], where
the intrinsic and distortion parameters of each camera are
computed based on a calibration checkerboard. We then
utilize the approach proposed in [6] to perform extrinsic
parameter calibration, which describes the relationship be-
tween the Lidar and the four cameras.

An FSYNC/FSIN (frame sync) signal is utilized for time
synchronization among multiple camera sensors, operating
at 10 Hz, which results in the same capture frequency per
camera. This sync signal consists of a pulse that goes high
at the beginning of each frame capture to trigger all four
camera shutters simultaneously.

The Ouster Lidar system works at 10 Hz, while the
UM7 IMU provides data at a rate of 200 Hz. Unlike the
hardware synchronization methods employed between cam-
eras, the synchronization between the IMU and Lidar, as
well as between the cameras and Lidar, is achieved solely
through software, where timestamp data is utilized to align
the outputs from the various sensors. Software synchroniza-
tion is convenient and cost-effective, whereas the relatively
noisy timestamps may result in less-than-optimal IMU pre-
integration in SLAM and cause misalignment in point-cloud
colorization.

With this SLAM setup, we present a new dataset which
covers various environments, including three complex in-
door scenes as well as a large-scale outdoor scene. We show
a qualitative overview of this dataset in Fig. 2 and present
the key statistics in Table 1.

1

Figure 2. Qualitative examples of our proposed dataset. With our self-developed SLAM hardware system, we capture a new dataset
comprising four scenes, including Cafeteria, Office, Laboratory and Town.

Table 1. Key statistics of our proposed dataset.

Scene
scene
type

frame
num

key-frame
num

scene
dimension

pcd
size

Cafeteria indoor 5788 1260 20× 8 4 millions
Office indoor 8184 1760 15× 18 45 millions

Laboratory indoor 5360 1216 15× 9 57 millions
Town outdoor 8816 1932 85× 45 39 millions

Data pre-processing: We first undistort the wide-angle
images based on the estimated intrinsic and distortion pa-
rameters from camera calibration, which produces prospec-
tively correct images with a large FoV of 97°. To reduce
any influence of dynamic objects on our 3D reconstruction
process, we employ a publicly available Yolo v8 model
[13] that detects and spatially localizes passengers in these
images. We exclude all pixels within their bounding boxes
from further processing.

Our dataset offers dense point clouds for each scene,
with a point number of 4-57 million points. As they of-
ten overpass the GPU memory limitation, we downsample
the point cloud to a voxel size of 0.05 m in all experiments.

B. Derivation of intrinsic refinement

Most research employing 3DGS assumes the prior avail-
ability of accurate camera intrinsic parameters [4, 7, 10].
However, this assumption is difficult to fulfill, especially
with SLAM devices that are equipped with multiple wide-
angle cameras. Inaccurate intrinsic parameter estimates of-
ten lead to blurred reconstructed images, particularly at the
image boundaries, as shown in Fig. 7 of the main paper.
This issue is most severe in setups with multiple cameras,
significantly degrading the quality of reconstruction. De-
spite its importance, this problem is frequently overlooked
by the research community. We tackle this by enhancing
the 3DGS rasterizer to refine imprecise camera intrinsic
parameters during joint reconstruction optimization. This
enhancement is achieved through an analytical solution,
where the backward pass of the rasterization can be ex-
pressed as:

∂L/∂fx = ∂L/∂u × ∂u/∂fx, ∂L/∂fy = ∂L/∂v × ∂v/∂fy;

∂L/∂cx = ∂L/∂u × ∂u/∂cx, ∂L/∂cy = ∂L/∂v × ∂v/∂cy.

Following the chain rule, the initial terms in each equation
are the partial derivatives from the loss to the uv variables,
representing the screen coordinates of Gaussian ellipses.
These derivatives are precomputed using the differentiable
rasterizer. The subsequent terms are the derivatives of uv
with respect to the intrinsic parameters, which have analyt-

ical solutions expressed as:

∂u/∂fx = u⃗x
cam/u⃗z

cam; ∂u/∂cx = 1

∂v/∂fy = u⃗y
cam/u⃗z

cam; ∂v/∂cy = 1

where u⃗cam represents the Gaussian mean in camera space,
with its components u⃗x

cam, u⃗y
cam and u⃗z

cam corresponding to
the x, y and z dimensions, respectively.

C. Exposure compensation module

Our captures were taken in uncontrolled settings, where
significant variations in lighting conditions exist during the
data acquisition. Training directly with these images can in-
troduce the floaters and degrade the scene geometry [3, 9].
To address this, we introduce an efficient exposure com-
pensation module to handle issues related to illumination
and exposure, drawing inspiration from [14] and [15]. We
hypothesize that the variations in illumination are region-
specific and affect the image’s brightness in a gradual man-
ner. Thus, our objective is simply to correct the illumination
aspect of the images using a learnable and low-frequency
offset.

In particular, for an image I ∈ R3×h×w, we initially
transform it from the RGB color space to the YCbCr color
space [12], denoted as IYCbCr ∈ R3×h×w. In this trans-
formed space, the first dimension IY ∈ R1×h×w corre-
sponds to the image luminance, representing brightness.
The second and third dimensions, ICb and ICr, capture the
chrominance, thereby defining the color context of the im-
age. Our learnable offset ∆2×h×w is applied on the lu-
minance dimension of the image as a small affine trans-
formation. This compensates for region-specific inconsis-
tency caused by either lighting condition or auto-exposure
changes, as follows:

I
′

Y = ∆[0:1] × IY +∆[1:2]. (1)

We then obtain our resulting image by projecting the IYCbCr
with modified I

′

Y back to the original RGB color space.
The parameter ∆ is defined per training image and is gen-
erated by a compact neural network implemented using
tinycudann [11]. This network consists of a multi-
resolution hash-encoding grid and a one-layer MLP. We set
n_lelves to 2 with a base resolution of 8× 8, which en-
sures that ∆ can only capture coarse spatial information.
More importantly, we further smooth ∆ with a low-pass
Gaussian filter with a large kernel size of 51 × 51 pixels.
We illustrate our exposure compensation scheme in Fig. 3.

Since these offsets are not available for test images, we
learn ∆ per test image during the test-time optimization,
together with the refinement of camera poses.

Figure 3. Illustration on our proposed exposure compensation
module. In this approach, we project the image into YCbCr color
space and only modify the channel representing illumination with
a learnable low-frequency ∆. We observe that ∆ mainly high-
lights strong lighting regions.

D. Ablations on test-time adaptation
For each test image, we keep the 3DGS parameters constant
while refining the camera pose and learning the exposure
compensation with low-frequency offset. Table 2 provides
a detailed analysis of the impact these components have
on the experimental results. Without applying either tech-
nique, we observe poor quality in novel-view renderings,
primarily due to camera pose mismatches. Test-time pose
optimization helps align the rendered image with the ac-
tual ground truth image, improving all visual metrics across
both evaluated scenes, particularly the Cafeteria scene. On
the other hand, using only exposure compensation did not
significantly enhance metrics related to visual and struc-
tural similarities (SSIM and LPIPS), though it did moder-
ately increase the Peak Signal-to-Noise Ratio (PSNR). As
expected, this exposure correction module addresses expo-
sure errors but struggles to capture high-frequency details.
Combining both techniques results in the best reconstruc-
tion performance in the tested scenes.

Table 2. Ablations on test-time adaptation. Pose denotes pose
refinement while Expo. represents exposure correction module.

Methods Cafeteria Laboratory

Pose Expo. PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
✗ ✗ 19.80 0.7752 0.1144 22.52 0.8984 0.0939
✗ ! 22.65 0.7872 0.1102 27.93 0.9065 0.0881
! ✗ 23.04 0.9026 0.0876 22.67 0.9017 0.0933
! ! 28.58 0.9156 0.0820 28.18 0.9101 0.0875

E. Line intersection-based depth estimation
We compute the depth of two matched key-point pair by de-
termining the intersection point of two lines defined by the
camera origins and their view directions. We first consider

two lines, l1 and l2, in 3D space, with origins o⃗1 and o⃗2, and
directions d⃗1 and d⃗2, respectively. Our objective is to find
the points on lines l⃗1 and l⃗2, parameterized by the scalars, t
and s:

l⃗1(t) = o⃗1 + t · d⃗1,

l⃗2(s) = o⃗2 + s · d⃗2,

so that the distance between these two points ||⃗l2(s) −
l⃗1(t)||2 are minimized (0 if the two lines intersect).

A necessary condition for this minimization is that the
vector l⃗2(s) − l⃗1(t) must be perpendicular to both d⃗1 and
d⃗2, which can be expressed as:(

l⃗2(s)− l⃗1(t)
)
· d⃗1 = (x⃗21 + s · d⃗2 − t · d⃗1) · d⃗1 = 0,(

l⃗2(s)− l⃗1(t)
)
· d⃗2 = (x⃗21 + s · d⃗2 − t · d⃗1) · d⃗2 = 0,

where x⃗21 = o⃗2 − o⃗1 denotes the vector between the two
origins. These conditions can be derived by setting the first-
order gradient of the distance function to zero. By applying
these two conditions, one can obtain the analytic solution,
resulting in the following expressions:

t =
||d⃗2||2·x⃗21 · d⃗1 − x⃗21 · d⃗2 · (d⃗1 · d⃗2)

||d⃗1 · d⃗2||2−||d⃗1||2||d⃗1||2
, (2)

s = −||d⃗1||2·x⃗21 · d⃗2 − x⃗21 · d⃗1 · (d⃗1 · d⃗2)
||d⃗1 · d⃗2||2−||d⃗1||2||d⃗1||2

. (3)

In our setting, for each pair of matched points, the origins
o⃗1 and o⃗2 are defined as the camera centers. The direc-
tions d⃗1 and d⃗2 represents the vectors from these camera
centers towards their respective image planes, determined
by the uv coordinates, image dimensions, and intrinsic pa-
rameters. Note that the camera origins and directions are
expressed in the world coordinates. Given t and s, we can
compute the depth of these two matched pixels by applying
the viewing matrix and extracting the z-axes element. We
disregard matched pairs where t or s is zero or negative, as
the line intersection must be in front of both cameras. Ad-
ditionally, we ignore pairs with very small angles (less than
2°) between d⃗1 and d⃗2, as this makes Eqs. 2 and 3 unstable
due to very small denominators.

F. Extended implementation details and dis-
cussion

In this section, we provide implementation details of our
proposed constrained-optimization based method, as well
as the comparison approaches.

All experiments were conducted on a machine equipped
with an Intel-14900K CPU and an NVIDIA 4090 GPU. Our

Figure 4. Camera pose visualization for the Cafeteria scene.
Red and green points represent the trajectories estimated by
3DGS-COLMAP and 3DGS-COLMAP△, respectively. 3DGS-
COLMAP fails to capture the geometry structure, while our
method, shown in blue, converges very similarly to 3D-
COLMAP△ but with better visual quality (as shown in Table 1
in the main paper).

framework is based on the open-source differentiable raster-
izer [8, 17], with modifications to accommodate non-centric
images, enable differentiable depth rendering, and ensure
differentiability in both extrinsic and intrinsic parameters.
To facilitate optimization and avoid sub-optimal solutions,
we employed a cosine learning rate decay strategy with
restarts. Specifically, we increased the learning rate and
performed the decay three times during the optimization
process, starting at the 1st, max_iter/6, and max_iter/2 itera-
tions. Considering that the point clouds roughly capture the
scene geometry, we disabled the pruning operation during
optimization for all experimental variants, while enabling
Gaussian point densification starting 67% of its training.

In the following, we provide the implementation details

Figure 5. Qualitative comparison for two camera pose optimiza-
tion approaches. Different colors represent camera poses at vari-
ous time during optimization. Left: camera poses are optimized
by rotating around the world origin (Eq. 6 in main paper). Right:
camera poses are rotated around the initial camera origin (Eq. 7
in main paper). Our proposed approach on the right demonstrates
better optimization robustness.

on comparing methods:

• 3DGS-COLMAP: We enhanced this widely-used base-
line by associating the camera information with RGB im-
ages. This was achieved by modifying the database
file of generated by COLMAP software, with the intrin-
sic estimations as a prior.

• 3DGS-COLMAP△: The next method takes the
initial camera poses as additional priors and per-
form rig-based bundle adjustment. This is achieved
using COLMAP’s point_triangulator and
rig_bundle_adjuster interfaces.

• CF-3DGS [5]: This approach incrementally estimates the
camera poses based solely on visual images, which uti-
lizes two distinct Gaussian models: a local model and
a global model. The local Gaussian model calculates
the relative pose differences between successive images,
while the global Gaussian model aims to model the entire
scene and refine the camera poses derived from the local
model. Since this approach is designed for a monocu-
lar camera configuration and requires video-like input, we
provide our images on a per-camera basis to ensure com-
patibility. Unexpectedly, this method failed to capture the
geometry after processing approximately 10 images, re-
sulting in significantly poor rendering. This issue is pri-
marily due to our key frames having a moderate covisibil-
ity threshold. Additionally, the frames exhibit a repetitive
block pattern and feature plain surfaces in many scenes,
which impede this visual-based method from accurately
estimating the camera poses.

• MonoGS [10]: Similar to the previous approach, this
technique incrementally reconstructs the scene while si-
multaneously estimating camera positions by optimizing
for photometric loss and depth inconsistency loss. In our
experiments, we found that this baseline faces a similar
challenge as CF-3DGS, specifically, a difficulty in ac-
curately capturing the true geometry from a diverse and
uncontrolled set of images. Consequently, it produces
entirely empty images after processing about 15 images
across all tested scenes. We interrupt and restart the train-
ing when it fails completely, continuing this process until
the method can provide a test score on our designated set
of test images

• InstantSplat [4]: This approach uses 3D foundation
models to generate a dense and noisy point cloud, which
is then optimized along with the camera extrinsics. Orig-
inally designed for sparse-view synthesis, we found it
challenging to handle more than 30 images due to GPU
memory limitations. To adapt this method to our con-
text, we selected a sequence of 30 images, consisting of
29 consecutive training images and one test image strate-
gically placed in the middle. The individual test score is
computed on the sub-model, which requires one minute
of pre-processing and 50 seconds of training time. We

Figure 6. Illustration of the Garage World dataset with four
undistorted cameras oriented in various directions. (b) We per-
turbed the camera poses using pose decomposition. (c) and (d)
show the point cloud both before and after the introduction of per-
turbations.

report the test score based on the average of multiple sub-
models.

• LetsGo [2]: Similar to ours, this approach proposed
to integrate high-quality point cloud and camera poses
with enhanced 3DGS technology. We follow their open-
sourced implementation1, default training parameters,
and test it on different sequences of GarageWorld and
Waymo datasets.

• StreetGS [16]: The last multi-modality method aims to
reconstruct dynamic driving scenes with dynamic and
static Lidar point clouds and high quality camera poses.
Similar to our 3DGS-COLMAP baselines, this baseline
first refines the camera poses using COLMAP and then
optimize each camera pose independently during the re-
construction. We follow the default setting in their open-
sourced implementation2 to test this method on both
Waymo and GarageWorld datasets, except that we only
reconstruct the static scene while ignoring the moving ob-
jects.
We present in Fig. 4 the pose estimation results from

3DGS-COLMAP, 3DGS-COLMAP△, and our method. As
illustrated, 3DGS-COLMAP fails in this scene due to re-
peated block patterns and plain surfaces. We also show
in Fig. 5 the qualitative examples for two different cam-
era pose refinement approaches. We observe that using the
Eq. 7 in the main paper results in a more stable optimization
trajectory.

G. Extended experimental setup and results on
GarageWorld dataset

We are particularly interested in GarageWorld [2] dataset
due to its high relevance to our work. We conducted ex-
tensive experiments on this dataset to validate the robust-
ness of our proposed method. Unlike our collected dataset,

1https://github.com/zhaofuq/LOD-3DGS
2https://github.com/zju3dv/street_gaussians

Table 3. Quantitative comparisons on the (perturbed) Garage
World dataset. We show that our proposed method can consis-
tently improve the performance despite large perturbations.

Noise
Level

Method Group 0 Group 6

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

- 3DGS 25.43 0.8215 0.2721 21.23 0.7002 0.4640
Ours 26.06 0.8325 0.2606 23.76 0.7779 0.3537

0.3° 3DGS 23.17 0.7595 0.4033 21.00 0.6979 0.5085
Ours 25.12 0.8060 0.3110 23.06 0.7515 0.4004

0.6° 3DGS 22.07 0.7388 0.4645 20.58 0.6874 0.5359
Ours 23.09 0.7594 0.3995 21.94 0.7160 0.4611

this dataset provides highly accurate camera poses and very
clean point cloud but with only one fisheye camera. Fortu-
nately, four pinhole images are undistorted from the same
wide-angle image with fixed view directions: Front, Left,
Right, and Up, as shown in Fig. 6 (a). We therefore consider
this dataset as an image collection from multiple-camera
setup and decompose the camera poses into device-center
and camera-to-device transformations. We further test our
method against 3DGS baseline [8] on two sequences, Group
0 and Group 6, randomly drawn from the campus scene.
This extended experimental results are shown in both Ta-
ble 3 and Fig. 7.

The first two rows of Table 3 show the experimental re-
sults under the ideal conditions. Due to the high-quality
camera poses and the clean point cloud, the reconstruc-
tion performance for 3DGS reaches a PSNR score of 25.43
and 21.23 dB for both scenes. Notably, our proposed
method consistently outperforms the baseline across both
scenes and all visual metrics. The rendered test images ex-
hibit clearer edges and more detailed context, which can
be attributed to our method’s ability to mitigate even sub-
tle intrinsic and extrinsic errors encountered during time-
intensive acquisitions with complex hardware.

Our next series of experiments aim to demonstrate the
robust capabilities of our proposed method using a dataset
with varying levels of perturbation. To achieve this, we
introduce Gaussian noise to both the device-center and
camera-to-device poses, as well as to the point cloud, cre-
ating synthetic datasets with degradations. This process is
illustrated in Fig. 6 (b) and (d).

The third and fourth rows of Table 3 present experi-
mental results under conditions of mild degradation. Both
camera-to-device and device transformations were adjusted
with a random Gaussian noise limited to 0.3°in their orien-
tations. Additionally, random Gaussian noise confined to
0.01 m was added to the initial point cloud. This noise neg-
atively affects the 3DGS baseline performance, whereas our
proposed method shows quality improvements by 1.95 dB,
4.65%, and 9.23% across the three visual criteria. In the
second scene, there is an enhancement of 2.06 dB, 5.36%,

https://github.com/zhaofuq/LOD-3DGS
https://github.com/zju3dv/street_gaussians

and 10.8%.
The final two rows in Table 3 represent the performance

of both methods under greater perturbations, with orienta-
tions disturbed up to 0.6°. Our method enhances reconstruc-
tion performance in both evaluated scenes, particularly for
the LPIPS metric, and maintains credible rendering quality
despite the challenging conditions.

H. Qualitative comparison on Waymo dataset
As shown in Fig. 8, we present qualitative comparisons
of our proposed method against state-of-the-art multimodal
3DGS approaches which integrate cameras, Lidars, and in-
ertial sensors. We show that our method can better recon-
struct scene geometries, as evidenced by straight rendered
streetlights, and achieves a higher level of detail in the final
rendering. These improvements demonstrate the effective-
ness of our approach in capturing fine-grained structural and
textural information, leading to a more realistic and visually
consistent representation of the scene.

References
[1] G. Bradski. The opencv library. Dr. Dobb’s Journal of Soft-

ware Tools, 2000. 1
[2] Jiadi Cui, Junming Cao, Yuhui Zhong, Liao Wang, Fuqiang

Zhao, Penghao Wang, Yifan Chen, Zhipeng He, Lan Xu, Yu-
jiao Shi, et al. Letsgo: Large-scale garage modeling and ren-
dering via lidar-assisted gaussian primitives. arXiv preprint
arXiv:2404.09748, 2024. 6

[3] François Darmon, Lorenzo Porzi, Samuel Rota-Bulò, and
Peter Kontschieder. Robust gaussian splatting. arXiv
preprint arXiv:2404.04211, 2024. 3

[4] Zhiwen Fan, Wenyan Cong, Kairun Wen, Kevin Wang, Jian
Zhang, Xinghao Ding, Danfei Xu, Boris Ivanovic, Marco
Pavone, Georgios Pavlakos, Zhangyang Wang, and Yue
Wang. Instantsplat: Unbounded sparse-view pose-free gaus-
sian splatting in 40 seconds, 2024. 3, 5

[5] Yang Fu, Sifei Liu, Amey Kulkarni, Jan Kautz, Alexei A.
Efros, and Xiaolong Wang. Colmap-free 3d gaussian splat-
ting. In CVPR, 2024. 5

[6] Arturo de la Escalera Fernando Garcı́a Jorge Beltrán, Car-
los Guindel. Automatic extrinsic calibration method for lidar
and camera sensor setups. IEEE Transactions on Intelligent
Transportation Systems, 2022. 1

[7] Nikhil Keetha, Jay Karhade, Krishna Murthy Jatavallabhula,
Gengshan Yang, Sebastian Scherer, Deva Ramanan, and
Jonathon Luiten. Splatam: Splat track & map 3d gaussians
for dense rgb-d slam. In CVPR, 2024. 3

[8] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3D Gaussian Splatting for Real-Time
Radiance Field Rendering. ACM ToG, 2023. 5, 6

[9] Jiaqi Lin, Zhihao Li, Xiao Tang, Jianzhuang Liu, Shiyong
Liu, Jiayue Liu, Yangdi Lu, Xiaofei Wu, Songcen Xu, You-
liang Yan, et al. Vastgaussian: Vast 3d gaussians for large
scene reconstruction. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages
5166–5175, 2024. 3

[10] Hidenobu Matsuki, Riku Murai, Paul HJ Kelly, and Andrew J
Davison. Gaussian splatting slam. In CVPR, 2024. 3, 5

[11] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. ACM TOG, 2022. 3

[12] Hideki Noda and Michiharu Niimi. Colorization in ycbcr
color space and its application to jpeg images. Pattern recog-
nition, 40(12):3714–3720, 2007. 3

[13] Dillon Reis, Jordan Kupec, Jacqueline Hong, and Ahmad
Daoudi. Real-time flying object detection with yolov8. arXiv
preprint arXiv:2305.09972, 2023. 3

[14] Christian Reiser, Richard Szeliski, Dor Verbin, Pratul P.
Srinivasan, Ben Mildenhall, Andreas Geiger, Jonathan T.
Barron, and Peter Hedman. Merf: Memory-efficient radi-
ance fields for real-time view synthesis in unbounded scenes.
SIGGRAPH, 2023. 3

[15] Yuehao Wang, Chaoyi Wang, Bingchen Gong, and Tianfan
Xue. Bilateral guided radiance field processing. ACM TOG,
2024. 3

[16] Yunzhi Yan, Haotong Lin, Chenxu Zhou, Weijie Wang,
Haiyang Sun, Kun Zhan, Xianpeng Lang, Xiaowei Zhou,
and Sida Peng. Street Gaussians: Modeling Dynamic Urban
Scenes with Gaussian Splatting. In ECCV, 2024. 6

[17] Vickie Ye, Ruilong Li, Justin Kerr, Matias Turkulainen,
Brent Yi, Zhuoyang Pan, Otto Seiskari, Jianbo Ye, Jeffrey
Hu, Matthew Tancik, and Angjoo Kanazawa. gsplat: An
open-source library for Gaussian splatting. arXiv preprint
arXiv:2409.06765, 2024. 5

Figure 7. Qualitative comparison of our constrained optimization approach with the 3DGS baseline. The top and bottom respectively show
clean and perturbed scenes for groups 0 and 6 at different levels. We show that our method enhances visual quality in the presence of
camera pose errors and maintains better quality even without noise injection.

Figure 8. Qualitative comparison of our constrained optimization approach with multimodal methods. We overlay the dynamic object
mask on the ground truth images to highlight the static regions on which our metrics are computed. We show that our proposed method
offers better scene geometry and rendering details compared with state-of-the-art approaches.

	Dataset acquisition and pre-processing
	Derivation of intrinsic refinement
	Exposure compensation module
	Ablations on test-time adaptation
	Line intersection-based depth estimation
	Extended implementation details and discussion
	Extended experimental setup and results on GarageWorld dataset
	Qualitative comparison on Waymo dataset

