A Lesson in Splats: Teacher-Guided Diffusion for 3D Gaussian Splats Generation
with 2D Supervision
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Figure 4. Visualization of the denoising process of our diffusion models, trained on the Car and Chair categories of ShapeNet-SRN dataset.

6. Additional results

6.1. Quantitative results

Co3D is an object-level dataset captured in the real world.
We train our model on the Co3D hydrant class (with Splatter
Image [55] as the teacher model) and compared it against
ViewSet Diffusion [53] and Splatter Image [55] in Table 6.
For both ViewSet and our model, we report average scores
over seeds and across the test data.

Method PSNRT SSIMT LPIPS |
ViewSet Diffusion [53]  21.24 0.79 0.201
Splatter Image [55] 21.77 0.78 0.154

Ours 22.34 0.82 0.149

Table 6. Comparison on Co3D hydrant dataset.

6.2. Qualitative results

We present visual comparisons of our method to Pixel-
NeRF [68] and VisionNeRF [28] on ShapeNet-SRN Cars
and Chairs in Fig. 5. Although our diffusion model is
of smaller size (Medium) than the original Splatter Image
(Large), we are still able to outperform it. More qualitative
results from RealEstate10K dataset are in Fig. 6.

6.3. Ablations

Feedforward vs Diffusion Model. To evaluate whether
the observed improvements originated from the diffusion
framework or architectural modifications, we trained a feed-
forward model by removing the time-conditioning layers
from the U-Net architecture while preserving its overall
structure. For comparison, we predicted Gaussian parame-
ters from a single input image following the splatter image.
The feedforward model exhibited significantly worse perfor-
mance, which we attribute to its reduced size, resulting in
limited representational capacity. From Tab. 7, we conclude
that the diffusion framework is more suitable for such gen-
eration tasks compared to deterministic models, producing
better results even with a smaller model size.

Setting PSNR1 SSIM?T LPIPS|
Splatter Image 24.1992 09213  0.0843
Feedforwad 19.9947 0.8613  0.1588

Table 7. Feedforward model vs Splatter Image.

Choices of losses. Through experiments (Tab. 8), we
found that it produces terrible results to directly train a diffu-
sion model using rendering loss (both in stage 1 and stage 2),
because the supervision indirectly comes from the rendered
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Figure 5. Additional qualitative results. Qualitative comparisons on the ShapeNet-SRN dataset for additional viewpoints and objects from
the Car and Chair categories. Our model produces views that are more faithful to the source image and better maintain plausibility, while
maintaining the fast rendering of Splatter Image. Note that while our diffusion model is of smaller size (Medium) than the original Splatter

Image (Large), we are still able to outperform it.

image instead of the denoised spaltters, which makes it hard
for the diffusion model to learn the accurate distribution.

Stage I Stage2 PSNR{ SSIM+ LPIPS |
X R 16.7284  0.7836  0.3733
R X 18.8201  0.8415  0.1862
D X 213050 0.8965  0.1182
R+D X 226078 0.9046  0.1083
R+D R+D 231323 09116 0.1061
R+D R 244936 09264  0.0945

3

Table 8. Ablation of losses at two stages. ‘R’ and ‘D’ represent
rendering loss and diffusion loss, respectively.

For stage 1 training, the performance improves using
teacher model as guidance and it reports the best results
using both rendering loss and diffusion loss.

For stage 2 training, if we continue to use the diffusion
loss, the teacher model will limit the performance of our
diffusion model. Therefore, we only use rendering loss at
stage 2, allowing the model to explore how to minimize the
rendering loss and improve the rendering performance.

Weighted loss at different timesteps. The difficulty of
prediction at different timesteps varies. Therefore, during the
stage 2 training, we assign different weights to the rendering
loss obtained at different timesteps and accumulate them
for back-propagation throughout the denoising steps. The
ablation results are in Tab. 9.

7. Data details

7.1. ShapeNet-SRN Cars and Chairs

We adhere to the standard protocol for the ShapeNet-SRN
dataset. Specifically, we use the provided images, camera
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Figure 6. Additional qualitative results. Qualitative comparisons on RealEstate1 0K dataset.

Setting PSNRT SSIM{ LPIPS|
w/o weighted loss  22.8848 0.9116  0.1044
w weighted loss 244936  0.9264  0.0945

Table 9. Ablations of weighted loss at different timesteps

intrinsics, camera poses, and data splits provided by [51]
with a resolution of 128 x 128. Our method is trained using
relative camera poses. For single-view reconstruction, view
64 serves as the conditioning view, while for additional-
view guidance, views 88 is used as guidance view. All
remaining available views are treated as target views, where
we compute novel view synthesis metrics.

7.2. RealEstate10K

We obtain 65,384 videos and their corresponding camera
pose trajectories from the provided youtube links. Using
these camera poses, we perform sparse point cloud recon-
struction with COLMAP [48]. For evaluation, we adopt the
test split provided by MINE [27] and follow prior work by
assessing PSNR on novel frames that are 5 and 10 frames
ahead of the source frame. Additionally, we evaluate on a
randomly sampled frame within an interval of £30 frames,
using the same frames employed in MINE’s evaluation. For
evaluation, we use a total of 3,205 frames. The results pre-
sented in Tab. 2 are sourced from Flash3D [54]. Our model
is trained and tested at a resolution of 256 x 384.

8. Implementation details

Multi-step Denoising. We train the model on 4 NVIDIA
A6000 GPUs. Our diffusion model is quite efficient . For
bootstrapping at stage 1, we use a batch size of 100 on each
GPU. After obtaining the diffusion model from the teacher

model, we perform multi-step denoising with a DDIM sam-
pler of 10 inference steps. The batch size for stage 2 re-
duces to 10. We assign different weights to the rendering
loss obtained at different timesteps and accumulate them for
back-propagation throughout the denoising steps.

Misc. We use Adam [24] as our optimizer with 5; =
0.9, B2 = 0.999. We use a total noising steps of 100, with a
linear scheduling, starting from 0.0001 to 0.2. For the boot-
strapping stage, we use the teacher model to provide both
supervision and noised samples. Instead of predicting the
noises added to the splatters, our diffusion model denoises
the noised inputs to clean samples directly. We trained for
5000 epochs for the bootstrapping stage and then finetune for
1000 epochs. For a fair comparison, we further finetuned the
Splatter Image model for 1000 epochs and found negligible
improvement because the model has converged. We set ¢t*
to be 20. For the architecture of diffusion model, we use the
U-Net implementation from diffusers '. For the consistency
branch, we use a denoising step of 10.

Method GSoptim Guidance PSNR SSIM  LPIPS
Splatter X X 24.75 0.93 0.06
Image v X 25.24 0.94 0.06
X X 25.18 0.93 0.06
Ours v X 25.26 0.94 0.06
X v 25.36 0.94 0.06
v v 25.55 0.95 0.05

Table 10. Additional-view guidance. Evaluated on a subset of the
car split, because per-sample GS optimization takes time.

Additional-view guidance Different from deterministic
feedforward models, one significant advantage we gain from
diffusion models is the ability of using guidance. We use one

Inttps://huggingface.co/docs/diffusers
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input view as the condition to predict the Gaussian Splats
parameters and then use a second view as guidance dur-
ing the denoising process using the forward guidance from
Universal Guidance [3].

Since we predict 5y directly, the noise can be calculated
as follows: .
o = 2% ©)

VI—a

Then we calculate the gradient using the guidance image

244 and the corresponding view direction v:

grad < V|44, R(50,v)]. (10)
With the guidance strength factor s(t), we can obtain é;

€ = et + s(t) - grad (11)
At last, we can get s;_1 following DDIM sampling:

Si-1 = /180 + /1 — 1 & (12)



