Supplementary Material

In the supplementary material section, the paper first
presents the ResPA pseudocode. Subsequently, it presents
the visualization results of more adversarial examples gen-
erated by various attacks, aiming to present the relevant
characteristics more intuitively. Finally, relevant work con-
tent is supplemented to further enrich the discussion and
support of the research.

A. ResPA Pseudo Code

Algorithm 1 Residual Perturbation Attack (ResPA)

Input: A clean image x with ground-truth label y, surro-
gate model f and the loss function J.

Input: The magnitude of perturbation ¢; the iteration num-
ber T'; the decay factor u; the balanced coefficient v;
the exponential decay rates 0; the upper bound factor 3
and the sample quantity N.

Output: An adversarial example %%,

1: go=05e0 = 0;28%" =z;p=a =¢/T
2: fort=0—T—1do
3: Setg =0

4 fori =0— N —1do
5: Randomly sample an example zi = 28 + \i
6: Calculate the gradient at }: g’ = V,:.J (zf, )
7 Compute the EMA of the gradient by:
8: Mt+1:0'6t+(1*9)'g/
9: Compute the residual gradient g;¢3 by:
10: 951 =9 — My
11: Compute the predicted point z*:
. N |
i T T T,
13: Calculate the gradient at *: ¢* = V-« J (2%, y)
14: Update gradient g by:
15: g=g+x 1=7) -9 +7 g
16: end for

17: Compute the EMA of g by:
18: €t+1:9'€t+(1—9)'§ -
19: Update the momentum by g;11 = p - g1 + ﬁ

20: Update adversarial example 2¢¢4 by:
21 z¢dy = ClipS {@¢? + o - sign (gs41) }
22: end for

. adv __ ,.adv
23; v — g
24: return x4

The algorithm of ResPA is summarized in Algorithm 1.

B. Visualizations on Adversarial Examples

In Figure 1, this paper presents four randomly chosen be-
nign images and their corresponding adversarial examples
generated by various attacks. These adversarial examples
are generated on the Den-121 model, leveraging MI, VMI,
GRA, PGN, AdaMSI, TPA, and ResPA respectively. No-
tably, these generated adversarial examples are impercepti-
ble to the human eye.

C. Relate work
C.1. Adversarial Attacks

Typically, adversarial attacks can be classified into two cat-
egories: white-box attacks and black-box attacks. In the
white-box setting, the attacker has full access to the target
model. For example, Goodfellow et al. [8] proposed the
Fast Gradient Sign Method (FGSM) for generating adver-
sarial examples via one-step gradient update. Subsequently,
Kurakin et al. [13] further extended FGSM into an itera-
tive form with a smaller step size, named [-FGSM. More-
over, Madry et al. [20] extended I-FGSM with a random
starting point to generate diverse adversarial examples. The
existing white-box attacks have achieved remarkable per-
formance by exploiting the knowledge of the target model.
Conversely, black-box attacks are more practical as they can
only obtain limited or no information regarding the target
model. There are two types of black-box adversarial at-
tacks: query-based attacks [1, 10] and transfer-based attacks
[3, 24, 25]. Query-based attacks generally require hundreds
or even thousands of queries to generate adversarial exam-
ples, which renders them inefficient in real-world applica-
tions. In contrast, transfer-based attacks generate adversar-
ial examples on the surrogate model. These examples are
also able to attack other models without accessing the tar-
get model, thereby resulting in high practical applicability
and attracting increasing attention.

Regrettably, adversarial examples generated through
white-box attacks typically exhibit limited transferabil-
ity. To enhance adversarial transferability, a variety of
momentum-based attacks have been proposed, such as MI
[3], NI [16], VMI [25], GRA [33]. Moreover, several in-
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Figure 1. Visualize the original samples and adversarial examples. The adversarial examples are generated on the Den-121 model by

various attack methods, with a maximum perturbation value of € = 16.

put transformation methods have also been put forward,
such as DIM [30], TIM [4], SIM [16], Admix [26], SSA
[19], BSR [24], etc., which augment images utilized for ad-
versarial perturbation computation to boost transferability.
In addition, some approaches improve adversarial transfer-
ability from different perspectives. For instance, Liu et al.
[17] proposed an ensemble attack, which simultaneously at-
tacks multiple surrogate models. Wu et al. [28] employed
an adversarial transformation network that can capture the
most harmful deformations to adversarial noises. Refer-
ences [5, 7, 27] search for adversarial examples in flat re-
gions to achieve better transferability.

C.2. Adversarial Defense

The presence of adversarial examples presents a significant
security risk to deep neural networks (DNNs). To mitigate
this risk, researchers have put forward a range of methods,
among which adversarial training [15, 20] has emerged as a
widely-utilized and effective approach. By supplementing
the training data with adversarial examples, this method en-
hances the robustness of trained models against adversarial
assaults. However, while adversarial training is effective, it
entails high training costs, particularly when dealing with
large-scale datasets and complex networks. Consequently,
researchers have proposed innovative defense methods as
alternatives. Guo et al. [9] use various input transforma-
tions, such as JPEG compression and total variance min-
imization, to eliminate adversarial perturbations from in-
put images. Liao et al. [I5] train a denoising autoen-
coder, known as the High-level representation guided de-

noiser (HGD), to purify the adversarial perturbations. Xie
et al. [29] suggest randomly resizing the image and adding
padding to lessen the adversarial impact, which is named
Randomized resizing and padding (RP). Xu et al. [31] pro-
pose the Bit depth reduction (Bit-Red) method, which de-
creases the number of bits per pixel to restrain the perturba-
tion. Liu et al. [18] proposed Feature Distillation (FD) to
safeguard against adversarial attacks by applying a JPEG-
based compression method to adversarial images. Cohen et
al. [2] utilize randomized smoothing (RS) to train a certifi-
ably robust classifier. Naseer et al. [21])propose a Neural
Representation Purifier (NRP) to get rid of the perturbation.

C.3. Flat Minima

Since Hochreiter et al. [11] pointed out that models with
good generalization ability might have flat minima, the aca-
demic community [23, 32] has conducted in-depth research
on the relationship between the flatness of minima and the
model generalization ability from both empirical and the-
oretical perspectives. Li et al. [14] noticed that skip con-
nections can facilitate the formation of flat minima. This
finding provides strong evidence for explaining the crucial
role of skip connections in training extremely deep net-
works. Similarly, Santurkar et al. [22] discovered that
Batch Normalization (BatchNorm) can significantly smooth
the optimization surface during the training process. The
”Sharpness-Aware Minimization” (SAM) [6] method en-
hances the model’s generalization ability by minimizing the
loss value and sharpness simultaneously and searching for
parameters within the neighborhood where the loss value



remains consistently low. Jiang et al. [12] studied 40 com-
plexity metrics, and the results showed that the sharpness-
based metric has the most significant correlation with gener-
alization ability. Zhao et al. [32] also confirmed that adding
the gradient norm of the loss function helps the optimizer
find flat local minima.
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