On the Provable Importance of Gradients for
Autonomous Language-Assisted Image Clustering

Supplementary Material

1. Notations and Datasets

Here we summarize the important notations in Table | and
the details of datasets in Table 2.

2. Derivation of Eq. (6) in Main Content
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where the last two step holds due to the fact that y; =
argminje(c) £(h(F;; W*), j) = arg maxye|c] Tij.

3. Assumptions, Propositions and Lemmas

Assumption 1 (y-smoothness). The loss function £(-,-)
(defined over Z x Y) is y-smooth such that, for any z € Z,
y € [C],and W, W' € W,

V(h(z;VV)7 y)

Assumption 2 ((p, €, 0)-Boundness). The parameter space
w c {We RUXC'. W — Wl < p} is within a
Frobenius ball of radius p around the given point W that
should satisfy the following properties:

1. SUP(y )Py E(h(z; Wy), y) =€

2. SUP(5.4)~Psy H8€(h(z;W0),y)/3WOHF =4

—((MzW),y)| <7 W - W||p.

Remark 1. It can be easily checked that, for the classifier
h(-; W) with softmax output function, the Frobenius norm
of the Hessian matrix of the cross-entropy function with re-
gard to the weight matrix W is bounded given a bounded
parameter space. As a results, it is always true that the
cross-entropy function is y-smooth, therefore justifying the
above assumptions.

Proposition 1. if Assumptions I and 2 holds, we have:

sup sup é(h(z;W),y) < A,

WeW (z,y)~Pzy

where A = vp® 4+ dp + €.

Proof. One can prove this by Mean Value Theorem of Inte-
grals easily. O

Proposition 2 (Self-bounding Property). if Assumptions [
and 2 holds, for any W € W, we have:

|06(h(z; W), y) JOW |3, < 27 - €(h(z; W), y). (1)

Proof. The detailed proof of Proposition 2 can be found in
Appendix B of Lei and Ying [1]. O

Proposition 3. If Assumptions | and 2, for any empirical
dataset D ~ IP‘ZDYI-, we have:
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where we use P as the abbreviation of P zy for brevity.

Proof. Given that the squared Frobenius norm ||H% is a
convex function, Jensen’s inequality and Proposition 2 im-
ply that
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Lemma 1. For any empirical dataset D ~ PN and W €
W, with the probability at least 1 — ( > 0, we have:
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Table 1. Main notations and their descriptions.

Notation Description

A Prompt template

fx CLIP image encoder

fr CLIP text encoder

zZ,Y,W CLIP feature space, Pseudo-label space, Parameter space

h, W Classifier, Parameters of h

Dy, N Unlabeled image dataset, The size of Dy

Dy, M Unlabeled wild textual dataset, The size of Dy

Pr(k), M}, | the ground-truth set of positive semantics whose predicted pseudo-label is k, The size of Pr (k)

x Unlabeled image

e CLIP feature of unlabeled image

y Image pseudo-label produced by k-means

t wild textual data

r CLIP feature of wild textual data

Y The predicted pseudo-label of wild textual data from h

Ty, The filtering threshold for wild text data whose predicted pseudo-label is &

1l I s Frobenius norm, Lo norm

Table 2. A summary of datasets used for evaluation.

Dataset Training Split  Test Split  # of Training # of Test # of Classes
STL-10 Train Test 5000 8000 10
CIFAR-10 Train Test 50000 10000 10
CIFAR-20 Train Test 50000 10000 20
ImageNet-10 Train Test 13000 500 10
ImageNet-Dogs Train Test 19500 750 15
DTD Train+Val Test 3760 1880 47
UCF-101 Train Test 9537 3783 101
ImageNet-1K Train Test 1281167 50000 1000

Proof. Without loss of generality, let
QUW, D) = E, y)enl (h(z; W), y),
Q(W,P) = E(, )l (h(z; W), y).
Given that
Ep pv [AW,D)] = Q(W,P),

Hoeffding’s inequality implies that, with the probability at
least 1 — ¢ > 0, we have:

QW*, D) — QW' P) < QW' D) - Q(WT,P)
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Lemma 2. [f Assumptions | and 2 holds, for any empirical
dataset D ~ PN and W € W, with the probability at least
1—¢ >0, we have:

dw (D,P) =Q(W, D) — Q(W,P)
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—dw(D,P) =Q(W,P) — Q(W, D)
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where D is the dimension of the parameter space W, U is
a uniform constant, and

Q(VV7 D) = E(zyy)epﬁ(h(z; W), y)7

Q(Wa P) = E(z,y)wﬂ”g(h(z; W)7 y) .



Proof. Since it can be easily checked that
]EDNPN [dW(D, P)] - O7

For any W € W and W’ € W, Proposition 2.6.1 and
Lemma 2.6.8 in Vershynin [2] imply that
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where || - ||o is the sub-gaussian norm and g is a uniform

constant. Therefore, the Dudley’s entropy integral [2] im-

plies that
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where F = {((h(z|W),y) : W € W}, uy is anther uni-
form constant, and Y (F, o, || - ||max) is the covering number

under the L°° norm. Due to the fact that
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according to the McDiarmid’s Inequality, for any W € W,
with the probability at least 1 — ¢ > 0, we have either

dw (D, P)
1
u1 log(1/¢)
<7 . [ee] 2N 27
7\/NA/O VIog T(F,A-0,L>)do+ A N
or
— dw(D,P)
1
u1 log(1/¢)
<— . oo .
7\/NA/O VIog Y(F,A-o0,L>*)do+ A N

Note that £(h(z; W), y) is (vp + 6)-Lipschitz with regard
to W under || - || 7. Then
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Lemma 3. If Assumptions [ and 2 hold, for any empirical
dataset D ~ PN and D' ~ PN, with the probability at
least (1 — ()3 > 0, we have

QWD)
<Q(W'.P)+ A log2(]b{§) LU A(A]\;e)D
log(1/¢) A(A—-¢€)D

where D is the dimension of the parameter space W, U is
a uniform constant, and

W* = arg min E(, el (h(z W), y)

= arg min (W, D),

Wi = arg in B )l (h(z W), )
- in Q(W,P
arg min (W, P),

QW* D) = E(zwepé(h(z;w*),y).
Proof. Given that

QW*, D) — Q(WT,P)
=Q(W*, D) — Q(W*,P) + Q(W*,P) — Q(W*, D)
+Q(W*, D) — Q(WT, P)
<Q(W*, D) — QW P) + Q(W*,P) — Q(W*,D)
+Q(WT, D) — (W1, P)
=dw-+ (D', P) — dw- (P, D) + QW' D) — Q(WT,P),

Lemmas | and 2 imply that, with the probability at least
(1 —¢)3 > 0, we have all of the following:
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—dw: (P, D) < A %HJ A(A%)D.
QWT, D) —Q(WT,P) < A %.
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Lemma 4. [f Assumptions | and 2 hold, for any empirical
dataset D ~ PN and D' ~ PN, with the probability at
least (1 — ¢)3 > 0, we have
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where D is the dimension of the parameter space W, U is
a uniform constant, §j = arg ming¢(cj E(h(z; W), k) and

IE(z,y)GD’

W* = arg min B, )en! (h(z; W), )
_ in Q(W,D).
arg min (W, D)

Proof. By Proposition 2 and Lemma 3, with the probability
at least (1 — ¢)3 > 0, we have

E(sy)en ||0(h(z; W), §) /oW |2,
<E (s y)ep 27 - £(h(z; W), §)
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Lemma 5. Let us define the ground-truth set of positive
semantics from the wild data as

Pr(k) = {Ei eDrt; ~ Ppos and k = arg max Wij}
JE[L]

and |P7 (k)| = By. If Assumptions | and 2 hold, with the
probability at least (1 — ()® > 0, we have the following:
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where D is the dimension of the parameter space W, U is a
uniform constant, fj; = arg minge[c E(h(ti; W), k) and

N
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Proof. Lemma 4 directly implies this result. O

4. Proof of Theorem 1 in Main Content

Theorem 1. Let us define the ground-truth set of positive
semantics from the wild data as

Pr(k) = {Ei EDy:t; ~ Ppos and k = arg maxmj}
JElL]

and |Pr(k)| = Bg. If Assumptions | and 2 hold, with the
probability at least 0.97, we have the following:

ERR05(k) L |{El € PT(k)O; S(E) > Tk}|
k

Wmelrvva(W)—i-O(\/BTk) +O( ]1[)1 ;

where O(1/N,1/By) > 0 is a uniform constant that is
positively correlated to 1/N and 1/Oy, and Q(W) =
]E(z,y)e]pzyé(h(z; W), y) denotes the expected risk.

Proof. Let S, be the uniform random variable with Pr (k)
as the support and S (t;) = ®(t;) for any t; € Py (k), then
by the Markov inequality, we have
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As implied by Lemma 5, with the probability at least (1 —
¢)? > 0, we have the following:
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If we set ¢ = 0.01, with the probability at least (1 —



0.01)® = 0.97, we have:
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