On the Provable Importance of Gradients for Autonomous Language-Assisted Image Clustering

Supplementary Material

1. Notations and Datasets

Here we summarize the important notations in Table 1 and the details of datasets in Table 2.

2. Derivation of Eq. (6) in Main Content

$$\begin{split} \left\| \frac{\partial \ell \left(h(\tilde{\mathbf{r}}_i; \mathbf{W}^{\star}), \tilde{y}_i \right)}{\partial \mathbf{W}^{\star}} \right\|_F^2 &= \sum_{k=1}^C \left\| \frac{\partial \ell \left(h(\tilde{\mathbf{r}}_i; \mathbf{W}^{\star}), \tilde{y}_i \right)}{\partial \mathbf{w}_k^{\star}} \right\|_2^2 \\ &= \sum_{k=1}^C \left\| \tau \cdot \left[\tilde{\pi}_{ik} - \mathbb{I}(k = \tilde{y}_i) \right] \tilde{\mathbf{r}}_i \right\|_2^2 \\ &= \tau^2 \cdot \sum_{k=1}^C \left\| \left(\tilde{\pi}_{ik} - \mathbb{I}(k = \tilde{y}_i) \right) \right\|^2 \\ &= \tau^2 \sum_{k \neq y_i}^C \tilde{\pi}_{ij}^2 + \tau^2 (\max_{j \in [C]} \tilde{\pi}_{ij} - 1)^2 \\ &= \tau^2 \cdot \left(\sum_{k \in [C]} \tilde{\pi}_{ik}^2 + 1 - 2 \max_{j \in [C]} \tilde{\pi}_{ij} \right), \end{split}$$

where the last two step holds due to the fact that $\tilde{y}_i = \arg\min_{j \in [C]} \ell(h(\tilde{\mathbf{r}}_i; \mathbf{W}^{\star}), j) = \arg\max_{k \in [C]} \tilde{\pi}_{ij}$.

3. Assumptions, Propositions and Lemmas

Assumption 1 (γ -smoothness). The loss function $\ell(\cdot, \cdot)$ (defined over $\mathcal{Z} \times \mathcal{Y}$) is γ -smooth such that, for any $\mathbf{z} \in \mathcal{Z}$, $y \in [C]$, and $\mathbf{W}, \mathbf{W}' \in \mathcal{W}$,

$$|\ell(h(\mathbf{z}, \mathbf{W}), y) - \ell(h(\mathbf{z}, \mathbf{W}'), y)| \le \gamma \|\mathbf{W} - \mathbf{W}'\|_F$$

Assumption 2 $((\rho, \epsilon, \delta)$ -Boundness). The parameter space $\mathcal{W} \subset \{\mathbf{W} \in \mathbb{R}^{d \times C} : \|\mathbf{W} - \mathbf{W}_0\|_F \leq \rho\}$ is within a Frobenius ball of radius ρ around the given point \mathbf{W}_0 that should satisfy the following properties:

1.
$$\sup_{(\mathbf{z},y)\sim\mathbb{P}_{\mathcal{Z}\mathcal{Y}}} \ell(h(\mathbf{z}; \mathbf{W}_0), y) = \epsilon;$$

2. $\sup_{(\mathbf{z},y)\sim\mathbb{P}_{\mathcal{Z}\mathcal{Y}}} \|\partial \ell(h(\mathbf{z}; \mathbf{W}_0), y)/\partial \mathbf{W}_0\|_F = \delta.$

Remark 1. It can be easily checked that, for the classifier $h(\cdot; \mathbf{W})$ with softmax output function, the Frobenius norm of the Hessian matrix of the cross-entropy function with regard to the weight matrix \mathbf{W} is bounded given a bounded parameter space. As a results, it is always true that the cross-entropy function is γ -smooth, therefore justifying the above assumptions.

Proposition 1. *if Assumptions 1 and 2 holds, we have:*

$$\sup_{\mathbf{W} \in \mathcal{W}} \sup_{(\mathbf{z}, y) \sim \mathbb{P}_{ZY}} \ell(h(\mathbf{z}; \mathbf{W}), y) \le A,$$

where
$$A = \gamma \rho^2 + \delta \rho + \epsilon$$
.

Proof. One can prove this by Mean Value Theorem of Integrals easily. \Box

Proposition 2 (Self-bounding Property). *if Assumptions 1* and 2 holds, for any $W \in W$, we have:

$$\|\partial \ell(h(\mathbf{z}; \mathbf{W}), y) / \partial \mathbf{W}\|_F^2 \le 2\gamma \cdot \ell(h(\mathbf{z}; \mathbf{W}), y).$$
 (1)

Proof. The detailed proof of Proposition 2 can be found in Appendix B of Lei and Ying [1]. \Box

Proposition 3. If Assumptions 1 and 2, for any empirical dataset $\mathcal{D} \sim \mathbb{P}_{ZY}^{|\mathcal{D}|}$, we have:

$$\left\| \mathbb{E}_{(\mathbf{z},y)\in\mathcal{D}} \frac{\partial \ell(h(\mathbf{z};\mathbf{W}),y)}{\partial \mathbf{W}} \right\|_F^2 \le 2\gamma \mathbb{E}_{(\mathbf{z},y)\in\mathcal{D}} \ell(h(\mathbf{z};\mathbf{W}),y),$$

$$\left\| \mathbb{E}_{(\mathbf{z},y) \sim \mathbb{P}} \frac{\partial \ell(h(\mathbf{z}; \mathbf{W}), y)}{\partial \mathbf{W}} \right\|_{F}^{2} \leq 2\gamma \mathbb{E}_{(\mathbf{z},y) \sim \mathbb{P}} \ell(h(\mathbf{z}; \mathbf{W}), y),$$

where we use \mathbb{P} as the abbreviation of \mathbb{P}_{ZY} for brevity.

Proof. Given that the squared Frobenius norm $\|\cdot\|_F^2$ is a convex function, Jensen's inequality and Proposition 2 imply that

$$\left\| \mathbb{E}_{(\mathbf{z},y)\in\mathcal{D}} \frac{\partial \ell(h(\mathbf{z}; \mathbf{W}), y)}{\partial \mathbf{W}} \right\|_{F}^{2} \leq \mathbb{E}_{(\mathbf{z},y)\in\mathcal{D}} \left\| \frac{\partial \ell(h(\mathbf{z}; \mathbf{W}), y)}{\partial \mathbf{W}} \right\|_{F}^{2}$$

$$\leq \mathbb{E}_{(\mathbf{z},y)\in\mathcal{D}} 2\gamma \cdot \ell(h(\mathbf{z}; \mathbf{W}), y)$$

$$= 2\gamma \cdot \mathbb{E}_{(\mathbf{z},y)\in\mathcal{D}} \ell(h(\mathbf{z}; \mathbf{W}), y)$$

$$\begin{split} \left\| \mathbb{E}_{(\mathbf{z},y) \sim \mathbb{P}} \frac{\partial \ell \left(h(\mathbf{z}; \mathbf{W}), y \right)}{\partial \mathbf{W}} \right\|_F^2 &\leq \mathbb{E}_{(\mathbf{z},y) \sim \mathbb{P}} \left\| \frac{\partial \ell \left(h(\mathbf{z}; \mathbf{W}), y \right)}{\partial \mathbf{W}} \right\|_F^2 \\ &\leq \mathbb{E}_{(\mathbf{z},y) \sim \mathbb{P}} 2\gamma \cdot \ell \left(h(\mathbf{z}; \mathbf{W}), y \right) \\ &= 2\gamma \cdot \mathbb{E}_{(\mathbf{z},y) \sim \mathbb{P}} \ell \left(h(\mathbf{z}; \mathbf{W}), y \right). \end{split}$$

Lemma 1. For any empirical dataset $\mathcal{D} \sim \mathbb{P}^N$ and $\mathbf{W} \in \mathcal{W}$, with the probability at least $1 - \zeta > 0$, we have:

$$\mathbb{E}_{(\mathbf{z},y)\in\mathcal{D}}\ell(h(\mathbf{z};\mathbf{W}),y)$$

$$\leq \mathbb{E}_{(\mathbf{z},y)\sim\mathbb{P}}\ell(h(\mathbf{z};\mathbf{W}),y) + A\sqrt{\frac{\log(1/\zeta)}{2N}}.$$

Table 1. Main notations and their descriptions.

Notation	Description				
Δ	Prompt template				
$f_{\mathcal{X}}$	CLIP image encoder				
$f_{\mathcal{T}}$	CLIP text encoder				
$\mathcal{Z},\mathcal{Y},\mathcal{W}$	CLIP feature space, Pseudo-label space, Parameter space				
h, \mathbf{W}	Classifier, Parameters of h				
$\mathcal{D}_{\mathcal{X}}, N$	Unlabeled image dataset, The size of $\mathcal{D}_{\mathcal{X}}$				
$\mathcal{D}_{\mathcal{T}}, M$	Unlabeled wild textual dataset, The size of $\mathcal{D}_{\mathcal{T}}$				
$\mathcal{P}_{\mathcal{T}}(k), M_k$	the ground-truth set of positive semantics whose predicted pseudo-label is k, The size of $\mathcal{P}_{\mathcal{T}}(k)$				
\mathbf{x}	Unlabeled image				
\mathbf{e}	CLIP feature of unlabeled image				
y	Image pseudo-label produced by k-means				
$rac{y}{ ilde{\mathbf{t}}}$	wild textual data				
$\widetilde{\mathbf{r}}$	CLIP feature of wild textual data				
$ ilde{y}$	The predicted pseudo-label of wild textual data from h				
T_k	The filtering threshold for wild text data whose predicted pseudo-label is k				
$\left\ \cdot \right\ _F, \left\ \cdot \right\ _2$	Frobenius norm, L_2 norm				

Table 2. A summary of datasets used for evaluation.

Dataset	Training Split	Test Split	# of Training	# of Test	# of Classes
STL-10	Train	Test	5000	8000	10
CIFAR-10	Train	Test	50000	10000	10
CIFAR-20	Train	Test	50000	10000	20
ImageNet-10	Train	Test	13000	500	10
ImageNet-Dogs	Train	Test	19500	750	15
DTD	Train+Val	Test	3760	1880	47
UCF-101	Train	Test	9537	3783	101
ImageNet-1K	Train	Test	1281167	50000	1000

Proof. Without loss of generality, let

$$\Omega(\mathbf{W}, \mathcal{D}) = \mathbb{E}_{(\mathbf{z}, y) \in \mathcal{D}} \ell(h(\mathbf{z}; \mathbf{W}), y),$$

$$\Omega(\mathbf{W}, \mathbb{P}) = \mathbb{E}_{(\mathbf{z}, y) \sim \mathbb{P}} \ell(h(\mathbf{z}; \mathbf{W}), y).$$

Given that

$$\mathbb{E}_{\mathcal{D} \sim \mathbb{P}^N} \left[\Omega(\mathbf{W}, \mathcal{D}) \right] = \Omega(\mathbf{W}, \mathbb{P}),$$

Hoeffding's inequality implies that, with the probability at least $1-\zeta>0$, we have:

$$\Omega(\mathbf{W}^{\star}, \mathcal{D}) - \Omega(\mathbf{W}^{\dagger}, \mathbb{P}) \leq \Omega(\mathbf{W}^{\dagger}, \mathcal{D}) - \Omega(\mathbf{W}^{\dagger}, \mathbb{P}) \\
\leq A \sqrt{\frac{\log(1/\zeta)}{2N}}.$$

Lemma 2. If Assumptions 1 and 2 holds, for any empirical dataset $\mathcal{D} \sim \mathbb{P}^N$ and $\mathbf{W} \in \mathcal{W}$, with the probability at least $1 - \zeta > 0$, we have:

$$\begin{split} d_{\mathbf{W}}(\mathcal{D}, \mathbb{P}) = & \Omega(\mathbf{W}, \mathcal{D}) - \Omega(\mathbf{W}, \mathbb{P}) \\ \leq & A \sqrt{\frac{\log(1/\zeta)}{2N}} + U \sqrt{\frac{A(A-\epsilon)D}{N}}, \end{split}$$

$$-d_{\mathbf{W}}(\mathcal{D}, \mathbb{P}) = \Omega(\mathbf{W}, \mathbb{P}) - \Omega(\mathbf{W}, \mathcal{D})$$
$$\leq A \sqrt{\frac{\log(1/\zeta)}{2N}} + U \sqrt{\frac{A(A - \epsilon)D}{N}},$$

where D is the dimension of the parameter space W, U is a uniform constant, and

$$\Omega(\mathbf{W}, \mathcal{D}) = \mathbb{E}_{(\mathbf{z}, y) \in \mathcal{D}} \ell(h(\mathbf{z}; \mathbf{W}), y),$$

$$\Omega(\mathbf{W}, \mathbb{P}) = \mathbb{E}_{(\mathbf{z}, y) \sim \mathbb{P}} \ell(h(\mathbf{z}; \mathbf{W}), y).$$

Proof. Since it can be easily checked that

$$\mathbb{E}_{D \sim \mathbb{P}^N} \left[d_{\mathbf{W}}(\mathcal{D}, \mathbb{P}) \right] = 0,$$

For any $\mathbf{W} \in \mathcal{W}$ and $\mathbf{W}' \in \mathcal{W}$, Proposition 2.6.1 and Lemma 2.6.8 in Vershynin [2] imply that

$$\begin{aligned} & \|d_{\mathbf{W}}(\mathcal{D}, \mathbb{P}) - d_{\mathbf{W}'}(\mathcal{D}, \mathbb{P})\|_{\Phi} \\ \leq & \frac{u_0}{\sqrt{N}} \|\ell(h(\mathbf{z}; \mathbf{W}), y) - \ell(h(\mathbf{z}; \mathbf{W}'), y)\|_{L^{\infty}(\mathcal{Z} \times \mathcal{Y})}, \end{aligned}$$

where $||\cdot||_{\Phi}$ is the sub-gaussian norm and u_0 is a uniform constant. Therefore, the Dudley's entropy integral [2] implies that

$$\mathbb{E}_{D \sim \mathbb{P}^{N}} \sup_{\mathbf{W} \in \mathcal{W}} d_{\mathbf{W}}(\mathcal{D}, \mathbb{P})$$

$$\leq \frac{u_{1}}{\sqrt{N}} \int_{0}^{+\infty} \sqrt{\log \Upsilon(\mathcal{F}, o, L^{\infty})} do,$$

where $\mathcal{F} = \{\ell(h(\mathbf{z}|\mathbf{W}), y) : \mathbf{W} \in \mathcal{W}\}$, u_1 is anther uniform constant, and $\Upsilon(\mathcal{F}, o, ||\cdot||_{\text{max}})$ is the covering number under the L^{∞} norm. Due to the fact that

$$\mathbb{E}_{D \sim \mathbb{P}^{N}} \sup_{\mathbf{W} \in \mathcal{W}} d_{\mathbf{W}}(\mathcal{D}, \mathbb{P})$$

$$\leq \frac{u_{1}}{\sqrt{N}} \int_{0}^{+\infty} \sqrt{\log \Upsilon(\mathcal{F}, o, L^{\infty})} do$$

$$\frac{u_{1}}{\sqrt{N}} \int_{0}^{A} \sqrt{\log \Upsilon(\mathcal{F}, o, L^{\infty})} do$$

$$= \frac{u_{1}}{\sqrt{N}} A \int_{0}^{1} \sqrt{\log \Upsilon(\mathcal{F}, A \cdot o, L^{\infty})} do,$$

according to the McDiarmid's Inequality, for any $\mathbf{W} \in \mathcal{W}$, with the probability at least $1 - \zeta > 0$, we have either

$$d_{\mathbf{W}}(\mathcal{D}, \mathbb{P})$$

$$\leq \frac{u_1}{\sqrt{N}} A \int_0^1 \sqrt{\log \Upsilon(\mathcal{F}, A \cdot o, L^{\infty})} do + A \sqrt{\frac{\log(1/\zeta)}{2N}}$$

or

$$\begin{split} &-d_{\mathbf{W}}(\mathcal{D}, \mathbb{P}) \\ \leq & \frac{u_1}{\sqrt{N}} A \int_0^1 \sqrt{\log \Upsilon(\mathcal{F}, A \cdot o, L^{\infty})} \mathrm{d}o + A \sqrt{\frac{\log(1/\zeta)}{2N}}. \end{split}$$

Note that $\ell(h(\mathbf{z}; \mathbf{W}), y)$ is $(\gamma \rho + \delta)$ -Lipschitz with regard to \mathbf{W} under $||\cdot||_F$. Then

$$\begin{split} &\Upsilon(\mathcal{F}, A \cdot o, L^{\infty}) \\ &\leq \Upsilon(\mathcal{W}, A \cdot o/(\gamma \rho + \delta), || \cdot ||_{F}) \\ &\leq (1 + \frac{2\rho(\gamma \rho + \delta)}{A \cdot o})^{D} \\ &\leq (1 + \frac{2(A - \epsilon)}{A \cdot o})^{D}, \end{split}$$

such that

$$\begin{split} &\frac{u_1}{\sqrt{N}}A\int_0^1\sqrt{\log\Upsilon(\mathcal{F},A\cdot o,L^\infty)}\mathrm{d}o\\ =&\frac{u_1}{\sqrt{N}}A\int_0^1\sqrt{\log(1+\frac{2(A-\epsilon)}{A\cdot o})^D}\mathrm{d}o\\ =&\frac{u_1}{\sqrt{N}}A\int_0^1\sqrt{D\log(1+\frac{2(A-\epsilon)}{A\cdot o})}\mathrm{d}o\\ =&\frac{u_1}{\sqrt{N}}A\sqrt{D}\int_0^1\sqrt{\frac{2(A-\epsilon)}{A\cdot o}}\mathrm{d}o\\ =&2\frac{u_1}{\sqrt{N}}A\sqrt{D}\sqrt{\frac{2(A-\epsilon)}{A}}\\ =&U\sqrt{\frac{A(A-\epsilon)D}{N}}, \end{split}$$

where $U = 2\sqrt{2}u_1$.

Lemma 3. If Assumptions 1 and 2 hold, for any empirical dataset $\mathcal{D} \sim \mathbb{P}^N$ and $\mathcal{D}' \sim \mathbb{P}^{N'}$, with the probability at least $(1-\zeta)^3 > 0$, we have

П

$$\begin{split} &\Omega(\mathbf{W}^{\star}, \mathcal{D}') \\ \leq &\Omega(\mathbf{W}^{\dagger}, \mathbb{P}) + A\sqrt{\frac{\log(1/\zeta)}{2N'}} + U\sqrt{\frac{A(A-\epsilon)D}{N'}} \\ &+ 2A\sqrt{\frac{\log(1/\zeta)}{2N}} + U\sqrt{\frac{A(A-\epsilon)D}{N}}, \end{split}$$

where D is the dimension of the parameter space W, U is a uniform constant, and

$$\mathbf{W}^{\star} = \arg \min_{\mathbf{W} \in \mathcal{W}} \mathbb{E}_{(\mathbf{z}, y) \in \mathcal{D}} \ell (h(\mathbf{z}; \mathbf{W}), y)$$

$$= \arg \min_{\mathbf{W} \in \mathcal{W}} \Omega(\mathbf{W}, \mathcal{D}),$$

$$\mathbf{W}^{\dagger} = \arg \min_{\mathbf{W} \in \mathcal{W}} \mathbb{E}_{(\mathbf{z}, y) \in \mathbb{P}} \ell (h(\mathbf{z}; \mathbf{W}), y)$$

$$= \arg \min_{\mathbf{W} \in \mathcal{W}} \Omega(\mathbf{W}, \mathbb{P}),$$

$$\Omega(\mathbf{W}^{\star}, \mathcal{D}') = \mathbb{E}_{(\mathbf{z}, y) \in \mathcal{D}'} \ell (h(\mathbf{z}; \mathbf{W}^{\star}), y).$$

Proof. Given that

$$\Omega(\mathbf{W}^{\star}, \mathcal{D}') - \Omega(\mathbf{W}^{\dagger}, \mathbb{P})
= \Omega(\mathbf{W}^{\star}, \mathcal{D}') - \Omega(\mathbf{W}^{\star}, \mathbb{P}) + \Omega(\mathbf{W}^{\star}, \mathbb{P}) - \Omega(\mathbf{W}^{\star}, \mathcal{D})
+ \Omega(\mathbf{W}^{\star}, \mathcal{D}) - \Omega(\mathbf{W}^{\dagger}, \mathbb{P})
\leq \Omega(\mathbf{W}^{\star}, \mathcal{D}') - \Omega(\mathbf{W}^{\star}, \mathbb{P}) + \Omega(\mathbf{W}^{\star}, \mathbb{P}) - \Omega(\mathbf{W}^{\star}, \mathcal{D})
+ \Omega(\mathbf{W}^{\dagger}, \mathcal{D}) - \Omega(\mathbf{W}^{\dagger}, \mathbb{P})
= d_{\mathbf{W}^{\star}}(\mathcal{D}', \mathbb{P}) - d_{\mathbf{W}^{\star}}(\mathbb{P}, \mathcal{D}) + \Omega(\mathbf{W}^{\dagger}, \mathcal{D}) - \Omega(\mathbf{W}^{\dagger}, \mathbb{P}),$$

Lemmas 1 and 2 imply that, with the probability at least $(1-\zeta)^3 > 0$, we have all of the following:

$$d_{\mathbf{W}}(\mathcal{D}', \mathbb{P}) \le A\sqrt{\frac{\log(1/\zeta)}{2N'}} + U\sqrt{\frac{A(A-\epsilon)D}{N'}}$$

$$-d_{\mathbf{W}^{\star}}(\mathbb{P}, \mathcal{D}) \leq A\sqrt{\frac{\log(1/\zeta)}{2N}} + U\sqrt{\frac{A(A-\epsilon)D}{N}}$$
$$\Omega(\mathbf{W}^{\dagger}, \mathcal{D}) - \Omega(\mathbf{W}^{\dagger}, \mathbb{P}) \leq A\sqrt{\frac{\log(1/\zeta)}{2N}}.$$

Lemma 4. If Assumptions 1 and 2 hold, for any empirical dataset $\mathcal{D} \sim \mathbb{P}^N$ and $\mathcal{D}' \sim \mathbb{P}^{N'}$, with the probability at least $(1-\zeta)^3 > 0$, we have

$$\mathbb{E}_{(\mathbf{z},y)\in\mathcal{D}'} \left\| \partial \ell \left(h(\mathbf{z}; \mathbf{W}^{\star}), \hat{y} \right) / \partial \mathbf{W}^{\star} \right\|_{F}^{2}$$

$$\leq 2\gamma \Omega(\mathbf{W}^{\dagger}, \mathbb{P}) + 2\gamma \left(A \sqrt{\frac{\log(1/\zeta)}{2N'}} + U \sqrt{\frac{A(A-\epsilon)D}{N'}} \right)$$

$$+ 2A \sqrt{\frac{\log(1/\zeta)}{2N}} + U \sqrt{\frac{A(A-\epsilon)D}{N}},$$

where D is the dimension of the parameter space W, U is a uniform constant, $\hat{y} = \arg\min_{k \in [C]} \ell(h(\mathbf{z}; \mathbf{W}^*), k)$, and

$$\mathbf{W}^* = \arg\min_{\mathbf{W} \in \mathcal{W}} \mathbb{E}_{(\mathbf{z}, y) \in \mathcal{D}} \ell(h(\mathbf{z}; \mathbf{W}), y)$$
$$= \arg\min_{\mathbf{W} \in \mathcal{W}} \Omega(\mathbf{W}, \mathcal{D}).$$

Proof. By Proposition 2 and Lemma 3, with the probability at least $(1 - \zeta)^3 > 0$, we have

 $\mathbb{E}_{(\mathbf{z},y)\in\mathcal{D}'} \|\partial \ell(h(\mathbf{z};\mathbf{W}),\hat{y})/\partial \mathbf{W}\|_{E}^{2}$

$$\leq \mathbb{E}_{(\mathbf{z},y)\in\mathcal{D}'} 2\gamma \cdot \ell\left(h(\mathbf{z}; \mathbf{W}), \hat{y}\right)$$

$$\leq \mathbb{E}_{(\mathbf{z},y)\in\mathcal{D}'} 2\gamma \cdot \ell\left(h(\mathbf{z}; \mathbf{W}), y\right)$$

$$= 2\gamma\Omega(\mathbf{W}, \mathcal{D})$$

$$\leq 2\gamma\Omega(\mathbf{W}^{\dagger}, \mathbb{P}) + 2\gamma(A\sqrt{\frac{\log(1/\zeta)}{2N'}} + U\sqrt{\frac{A(A-\epsilon)D}{N'}}$$

$$+2A\sqrt{\frac{\log(1/\zeta)}{2N}} + U\sqrt{\frac{A(A-\epsilon)D}{N}}\right).$$

Lemma 5. Let us define the ground-truth set of positive semantics from the wild data as

$$\mathcal{P}_{\mathcal{T}}(k) = \left\{ \tilde{\mathbf{t}}_i \in \mathcal{D}_{\mathcal{T}} : \tilde{\mathbf{t}}_i \sim \mathbb{P}_{pos} \ and \ k = \arg \max_{j \in [L]} \pi_{ij} \right\}$$

and $|\mathcal{P}_{\mathcal{T}}(k)| = B_k$. If Assumptions 1 and 2 hold, with the probability at least $(1 - \zeta)^3 > 0$, we have the following:

$$\mathbb{E}_{\tilde{\mathbf{t}}_{i} \in \mathcal{P}_{\mathcal{T}}(k)} \left\| \partial \ell \left(h(\tilde{\mathbf{r}}_{i}; \mathbf{W}^{\star}), \tilde{y} \right) / \partial \mathbf{W}^{\star} \right\|_{F}^{2}$$

$$\leq 2\gamma \Omega(\mathbf{W}^{\dagger}, \mathbb{P}) + 2\gamma \left(A \sqrt{\frac{\log(1/\zeta)}{2B_{k}}} + U \sqrt{\frac{A(A-\epsilon)D}{B_{k}}} \right)$$

$$+2A \sqrt{\frac{\log(1/\zeta)}{2N}} + U \sqrt{\frac{A(A-\epsilon)D}{N}},$$

where D is the dimension of the parameter space W, U is a uniform constant, $\tilde{y}_i = \arg\min_{k \in [C]} \ell(h(\tilde{\mathbf{t}}_i; \mathbf{W}^*), k)$, and

$$\mathbf{W}^{\star} = \arg\min_{\mathbf{W} \in \mathcal{W}} \frac{1}{N} \sum_{i=1}^{N} \ell(h(\mathbf{e}_i; \mathbf{W}), y_i).$$

Proof. Lemma 4 directly implies this result.

4. Proof of Theorem 1 in Main Content

Theorem 1. Let us define the ground-truth set of positive semantics from the wild data as

$$\mathcal{P}_{\mathcal{T}}(k) = \left\{ \tilde{\mathbf{t}}_i \in \mathcal{D}_{\mathcal{T}} : \tilde{\mathbf{t}}_i \sim \mathbb{P}_{pos} \ and \ k = \arg \max_{j \in [L]} \pi_{ij} \right\}$$

and $|\mathcal{P}_{\mathcal{T}}(k)| = B_k$. If Assumptions 1 and 2 hold, with the probability at least 0.97, we have the following:

$$\begin{split} \textit{ERR}_{\textit{pos}}(k) &\triangleq \frac{\left|\left\{\tilde{\mathbf{t}}_i \in \mathcal{P}_{\mathcal{T}}(k) : S(\tilde{\mathbf{t}}_i) > T_k\right\}\right|}{O_k} \\ &\leq \frac{2\gamma}{T_k} \left[\min_{\mathbf{W} \in \mathcal{W}} \Omega(\mathbf{W}) + O(\sqrt{\frac{1}{B_k}}) + O(\sqrt{\frac{1}{N}})\right], \end{split}$$

where $O(1/N, 1/B_k) \ge 0$ is a uniform constant that is positively correlated to 1/N and $1/O_k$, and $\Omega(\mathbf{W}) = \mathbb{E}_{(\mathbf{z},y)\in\mathbb{P}_{ZY}}\ell(h(\mathbf{z};\mathbf{W}),y)$ denotes the expected risk.

Proof. Let S_k be the uniform random variable with $\mathcal{P}_{\mathcal{T}}(k)$ as the support and $S_k(\tilde{\mathbf{t}}_i) = \Phi(\tilde{\mathbf{t}}_i)$ for any $\tilde{\mathbf{t}}_i \in \mathcal{P}_{\mathcal{T}}(k)$, then by the Markov inequality, we have

$$\begin{split} \text{ERR}_{\text{pos}}(k) &\triangleq \frac{\left|\left\{\tilde{\mathbf{t}}_i \in \mathcal{P}_{\mathcal{T}}(k) : S(\tilde{\mathbf{t}}_i) > T_k\right\}\right|}{O_k} \\ &\leq \frac{1}{T_k} \mathbb{E}_{\tilde{\mathbf{t}}_i \in \mathcal{P}_{\mathcal{T}}(k)} \left[S_k(\tilde{\mathbf{t}}_i)\right]. \end{split}$$

As implied by Lemma 5, with the probability at least $(1 - \zeta)^3 > 0$, we have the following:

$$\mathbb{E}_{\tilde{\mathbf{t}}_{i} \in \mathcal{P}_{\mathcal{T}}(k)} \left[S_{k}(\tilde{\mathbf{t}}_{i}) \right]$$

$$= \mathbb{E}_{\tilde{\mathbf{t}}_{i} \in \mathcal{P}_{\mathcal{T}}(k)} \left\| \partial \ell \left(h(\tilde{\mathbf{r}}_{i}; \mathbf{W}^{\star}), \tilde{y} \right) / \partial \mathbf{W}^{\star} \right\|_{F}^{2}$$

$$\leq 2\gamma \Omega(\mathbf{W}^{\dagger}, \mathbb{P}) + 2\gamma \left(A \sqrt{\frac{\log(1/\zeta)}{2B_{k}}} + U \sqrt{\frac{A(A - \epsilon)D}{B_{k}}} \right)$$

$$+ 2A \sqrt{\frac{\log(1/\zeta)}{2N}} + U \sqrt{\frac{A(A - \epsilon)D}{N}} \right).$$

If we set $\zeta = 0.01$, with the probability at least (1 -

$$(0.01)^3 = 0.97$$
, we have:

$$\begin{split} & \frac{\left|\left\{\tilde{\mathbf{t}}_{i} \in \mathcal{P}_{\mathcal{T}}(k) : S(\tilde{\mathbf{t}}_{i}) > T_{k}\right\}\right|}{B_{k}} \\ \leq & \frac{2\gamma}{T_{k}}\Omega(\mathbf{W}^{\dagger}, \mathbb{P}) + \frac{2\gamma}{T_{k}}\underbrace{\left(A\sqrt{\frac{\log 10}{B_{k}}} + U\sqrt{\frac{A(A-\epsilon)D}{B_{k}}}\right)}_{O(\sqrt{1/B_{k}})} \\ & + \frac{2\gamma}{T_{k}}\underbrace{\left(2A\sqrt{\frac{\log 10}{N}} + U\sqrt{\frac{A(A-\epsilon)D}{N}}\right)}_{O(\sqrt{1/N})}. \end{split}$$

References

[1] Yunwen Lei and Yiming Ying. Sharper generalization bounds for learning with gradient-dominated objective functions. In *International Conference on Learning Representations*, 2021.

[2] Roman Vershynin. High-dimensional probability, 2009. 3