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7. Network
Our proposed method, UnMix-NeRF, builds upon Nerfacto
by incorporating spectral unmixing into the radiance field
representation. The full architecture is detailed in Table 5,
following the structure of Figure 2 in the main paper. The
Base Geometry MLP processes the 12D NeRF positional
encoding and outputs density σ along with a 15D geometry
feature vector. This feature vector, along with the positional
encoding, is then passed to the Feature MLP, which predicts
per-point material abundances and the specular tint.

To allow for per-point spectral scaling, the Scaling MLP
separately processes the position encoding and predicts K
per-material scaling factors, ensuring a flexible spectral re-
construction. To handle view-dependent effects, the Direc-
tional MLP receives the direction encoding (16D SHEncod-
ing) concatenated with the positional encoding (12D), pre-
dicting a per-wavelength specular reflectance using a final
sigmoid activation to ensure physically plausible outputs.

This modular design ensures that spectral unmixing
is seamlessly integrated into the NeRF volumetric ren-
dering process, allowing for accurate hyperspectral novel
view synthesis while also enabling material segmentation
through abundance-based clustering.

Module Input Features Output Features

Base Geometry MLP

Layer 1: Linear + ReLU 12 (pos. encoding) 64
Layer 2: Linear + ReLU 64 64
Layer 3: Linear + ReLU 64 64
Layer 4: Linear + ReLU (skip) 64 + 12 64
Layer 5: Linear 64 16 (density and features)

Feature MLP (Abundances + Specular Tint)

Layer 1: Linear + ReLU 27 (pos. enc. 12 + geo. feat 15) 64
Layer 2: Linear + ReLU 64 64
Layer 3: Linear 64 K + 1(abundances and tint)

Scaling MLP (Endmember Scalars)

Layer 1: Linear + ReLU 12 (pos. enc.) 64
Layer 2: Linear + ReLU 64 64
Layer 3: Linear 64 K

Directional MLP (Specular Reflectance)

Layer 1: Linear + ReLU 28 (dir. enc. 16 + pos. enc. 12) 16
Layer 2: Linear + Sigmoid 16 Wavelengths (e.g. 128)

Table 5. UnMix-NeRF architecture.Our method extends Ner-
facto by integrating spectral unmixing into the NeRF formulation.

8. Additionally HS-NeRF results
We present the quantitative results for the Tools and
Origami scenes from the Surface Optics dataset. Unlike
the Rosemary and Basil scenes, these cases exhibit signifi-
cant convergence issues due to corrupted original pose files.
Consequently, the optimization process fails to achieve

high-quality reconstructions, leading to suboptimal qualita-
tive outcomes. Moreover, since 3DGS and HyperGS were
evaluated using different, uncorrupted pose files, any direct
comparison under these conditions would be inherently un-
fair. Therefore, we exclude the results for 3DGS and Hy-
perGS on these scenes to maintain a consistent and fair eval-
uation. We reached out to the HyperGS authors, but they did
not provide their pose files.

Method Tools Origami
PSNR ↑ SSIM↑ SAM↓ RMSE↓ PSNR ↑ SSIM↑ SAM↓ RMSE↓

NeRF 11.61 0.4962 0.0610 0.3018 13.64 0.5684 0.0835 0.2083
MipNeRF 12.78 0.5213 0.0598 0.2781 11.697 0.5149 0.0956 0.2595
TensoRF 11.697* 0.5149* 0.0956* 0.2595* 12.98 0.4488 0.0776 0.2314
Nerfacto 16.254 0.6135 0.0198 0.1549 14.02 0.5028 0.0953 0.1993
MipNerf360 16.80 0.7241 0.0832 0.1482 9.93 0.3951 0.3271 0.3288
HS-NeRF *12.001 *0.355 *0.470 *0.185 10.359 0.4530 0.3197 0.3188
Ours 17.347 0.4729 0.0174 0.1357 15.973 0.3251 0.086 0.1403

Table 6. Quantitative results on the Surface Optics dataset for the
Tools and Origami scenes.

9. Extended NeSpoF synthetic dataset
To advance material segmentation in multi-view settings,
we extend the NeSpoF dataset by providing ground-truth
material labels for all scenes in the synthetic scenes. These
labels are available for every viewpoint, enabling precise
evaluation of material segmentation methods. We gener-
ate the material annotations by rendering the corresponding
material index for each object in the scene, ensuring con-
sistency across views. This dataset extension will be pub-
licly released as a benchmark for evaluating material seg-
mentation. Figure 6 showcases the rendered material an-
notations for various synthetic scenes, where distinct colors
correspond to different materials.

Figure 6. Extended NeSpoF Synthetic Dataset. ground-truth
material segmentation for different synthetic scenes.



10. Limitations
The number of endmembers is a key hyperparameter in
spectral unmixing, determined by scene complexity and
material diversity. Outdoor scenes typically require 3–5
endmembers,(e.g., vegetation, soil, concrete) while more
diverse environments up to 10 or more. This number can be
estimated from known materials or through methods such as
VCA. The theoretical upper bound is the number of spec-
tral channels plus one. A potential inherited limitation of
our work is its sensitivity to the incorrect estimation of the
number of learnable endmembers, which can affect both re-
construction quality and interpretability as shown in the fol-
lowing image. Also, if predicted endmembers are not dis-
tinct enough, it may lead to metamerism.

k=1 k=3 k=5 k=7 GT

Figure 7. Effect of k (number of endmembers) on reconstruc-
tion. With k=1, the model collapses to a near-uniform image (un-
derfitting). As k increases (3→ 7), edges, textures, and color fi-
delity progressively improve, approaching the ground truth (GT).
Small k fails to separate materials; larger k captures spectral vari-
ability better and yields higher-fidelity reconstructions.
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