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Abstract

This supplementary material provides summary of notation

used in the text in Sec. 1. We report further implementa-

tion details of TriDi, description of text labels annotation,

insights on symmetry augmentation, and training losses in

Sec. 2. In Sec. 3, we include details on the conducted user

study, qualitative results on unseen data, ablation results,

qualitative results on GRAB, BEHAVE, OMOMO, and In-

terCap, as well as extended qualitative an quantitative com-

parison with the baselines. In Sec. 4, we include a discus-

sion on the broader impacts of our work. Details on all

four datasets used in the experiments are summarized in

Sec. 5. Sec. 6 introduces an optional post-processing refine-

ment procedure that increases the realism of the generated

interactions. Finally, in Sec. 7, we provide full definition of

the error metrics. In the attached video, we show results

of the keyframing animation discussed in the main text, as

well as additional qualitative examples, and we encourage

the reader to look at the video.

1. Background and Notation

Background. We follow the formulation of Denoising

Diffusion Probabilistic Model (DDPM) [7] to obtain a

closed-form expression for zt given the original sample z0.

Let αi = 1− βi, ᾱt =
∏t
i=1 αi, and ϵ ∼ N (0, I):

q(zt|z0) = N (zt;
√
ᾱtz0, (1− ᾱt)I),

zt =
√
ᾱtz0 +

√
1− ᾱtϵ.

(1)

An iterative denoising process with denoising network

Dψ is defined by the following:

zt−1 =
√
ᾱt−1Dψ(zt; c, t) +

√

1− ᾱt−1ϵ, (2)

where ẑ0 = Dψ(zt; c, t).

Notation. Tab. S1 defines symbols used in our work.

2. Implementation details

The denoising network has a total of 15M parameters, and it

is trained end-to-end. We use a batch size of 1024, a learn-

ing rate of 1e − 4 with a cosine scheduler, and warm up

the training during the first 50k steps. The parameters are

optimized with AdamW [10]. We train for a total of 300k

steps. All the experiments are performed on a machine with

RTX4090 GPU. The training of the model takes approx-

imately 20 hours. The contact encoder-decoder network

Symbol Description Domain

H Human Modality (θH, βH,gH)
θH Human Pose R

51×3

βH Human Identity R
10

VH Human Template’s Vertices R
690

gH Human Global Pose in 6-DoF R
9

d Human to Object vertex distance R
690

O Object Modality (gO)
gO Object Global Pose in 6-DoF R

9

CO Object Information for conditioning (fO,yO)
fO PointNext features object R

1024

yO one-hot encoding of the class {0, 1}40
VO Object Template’s Vertices R

1500

I Interaction (zI)
TI Interaction Textual Label text

zI Interaction latent representation R
128

ϕI Interaction contact map {0, 1}690
EφI

Interaction Encoder (Contact Map) ϕI 7→ zI
DφI

Interaction Decoder (Contact Map) zI 7→ ϕI

ETI
Interaction Encoder (Textual Label) TI 7→ zI

Table S1. Notation Table. The main notation used in our paper.

with 1.7M parameters is trained separately for 70 epochs,

converging on the same machine in ∼ 1 hour. The infer-

ence for one example with diffusion guidance takes around

3.07 seconds. Since TriDi works per-frame the inference

can be majorly sped up using batching, e.g. inference time

for 1024 examples in one batch is 38.79 s. All models are

implemented in PyTorch [11] framework. Following [20]

we convert all rotations (θH,gH,gO) to 6-d representations

before passing them to the network. We rely on blendify [6]

for visualization.

We implement diffusion reconstruction guidance within

the DDPM pipeline and apply it for the last 200 out of 1000
iterations of the denoising process with weight λ = 2.0.

Text labels annotation. During training, we use a set

of predefined templates to generate text labels on the fly,

making the encoder ETI
more robust to diverse text in-

puts. The template is selected randomly from a pool (pro-

vided in Listing 1) based on which body parts are in con-

tact with the object and the object’s class. For example,

if a person sits on a chair, then the text label is selected

from a set of 1. Generic templates and 2.2 Sitting tem-

plates. We study the performance of the contact encoding

model in relation to a set of text templates used for train-
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Figure S1. Contact maps. Examples of contact maps decoded

from text queries.

ing. The model trained using only one generic template

(i.e. "<body parts> <is / are? in contact

with <object class>") has a significantly lower re-

call 63.5 compared to 75.0 of a model trained with the full

set of templates. Recall is important because the GT contact

maps contain mostly zeros with only a few body points in

contact with the object. Moreover, the model trained with

the full set of templates exhibits generalization to unseen

text inputs (e.g. last row in Fig. S1).

Augmentation. During training, we apply the symme-

try augmentation randomly mirroring samples through ZY

plane. As a result, the model exhibits less bias towards

right-handed interactions. Qualitative examples in Fig. S2

for both cases of sampling from p(H, I|O) and p(O, I|H)
demonstrate how TriDi generates left- and right-handed in-

teractions given the same condition.

1. Generic templates:

- <body parts> <is / are> in contact

with <object class>

- <object class> is in contact

with <body parts>

- <body parts> touch(-es) <object class>

- <object class> <touches> <body parts>

2. Interaction specific templates:

2.1 Basketball template

- a person is dribbling basketball

2.2 Sitting templates

- <body parts> <is / are> on <object class>

- a person <is / sits> on <object class>

2.3 Hands-only templates

- <object class> is in <body parts>

- <body parts> <hold(-s) / grab(-s)>

<object class>

- a person is <holding / grabbing / carrying>

<object class>

Listing 1. Text labels. All templates used during training.

Losses. The objective function used to train our network

is the weighted combination of the following losses:

LH
n = ∥θH − θ̂H∥1 + ∥βH − β̂H∥1 + ∥gH − ĝH∥1

LO
n = ∥gO − ĝH∥1

LI
n = ∥zI − ẑI∥2

LH
v = ∥VH − V̂H∥2

LO
v = ∥VO − V̂O∥2

LI
v = ∥d− d̂∥2

(3)

The resulting loss function is:

LTriDi =λH
n L

H
n + λO

n L
O
n + λI

nL
I
n+

λH
v L

H
v + λO

v L
O
v + λI

vL
I
v

(4)

with weighting coefficients set to: λH
n = λO

v = 2, λO
n =

λI
n = 1, λH

v = 6, λI
v = 4.

3. Additional Evaluation

User study. This section introduces details on the user

study that was used to evaluate TriDi. We have designed

and run a user study, asking participants to rate the quality

of the generated interactions. We compared TriDi against

one baseline method and ground-truth data in two genera-

tion modes: p(H, I|O) and p(O, I|H). We used GNet and

ObjPOP+cVAE as the baselines, and randomly selected 10

queries for the generation (5 from each of BEHAVE and

GRAB) for each mode. In every question we show users

three randomly shuffled samples: ground-truth data, TriDi,

and corresponding baseline. The participants were asked



Figure S2. Qualitative examples. Results demonstrating the

effectiveness of the symmetry augmentation. TriDi generates

left- and right-handed interactions given the same condition. Figure S3. User study. The interface of the user study.

to rate the quality of each sample based on the realism of

human-object interaction, and the amount of interpenetra-

tion between human and object. Each sample is rendered

from the same 4 orthogonal views to allow comprehen-

sive assessment . The rating scale consisted of three op-

tions: Worst, Moderate, and Best, with ratings being non-

exclusive (i.e., more than one sample can have a similar rat-

ing). Example interface of the user study is provided in the

Fig. S3. As a result, we have collected 40 responses. We

summarize the results in the Tab. S2, comparing the ratings

assigned to the samples by users. On average, results of

TriDi were preferred to the baselines in 89.0% of the cases

and preferred to the ground-truth examples in 52.0% of the

cases. This suggests that the results of TriDi are more appre-

ciable than the baselines and produce a realism comparable

to captured data.

Mode Rating comparison Result in %

p(H, I|O)
TriDi > GNet 87.75%
TriDi > GT data 47.75%

p(O, I|H)
TriDi > ObjPOP+cVAE 90.25%
TriDi > GT data 56.25%

Table S2. User study. Summary of the user study results.

Evaluation of H|O, I. We compare TriDi with

COINS [19] on the task of human generation given

object and text in Table S3. We observe that while COINS

is able to generate sitting poses it struggles to generate

realistic and diverse interactions with other objects.

Method

BEHAVE, H|O, I

1-NNA (→ 50) COV↑ MMD↓ MPJPE↓ MPJPE-PA↓ Acccont ↑

COINS 96.4±0.1 19.6±0.1 3.02±0.008 43.4 15.9 93.9/NA

TriDi 66.1±0.4
50.8±0.1

1.30±0.010
16.9 10.6 96.7/99.5

Table S3. Comparison with COINS.

Diversity and multimodality. We follow Ac-

tion2Motion [5] and compute diversity (Div) and multi-

modality (MMod) for GT data and TriDi to demonstrate

that the generated distributions in all seven cases are

non-trivial. Additionally, we evaluate the quality of the

generated contacts to prove that the generated HOI is

plausible. We compute contact accuracy (Accc) for cases

where GT contacts are available and contact presence

(Presencec) that reflects the percentage of generated

samples with at least one vertex in contact for other cases.

The contact metrics are averaged across three generated

samples. The results are presented in Table S4. The

variance of the distribution generated by TriDi is on par

with the variance of the GT data, which means that the

generated samples are non-trivial. At the same time, high

contact accuracy (96.3 on average) and contact presence

(98.4 on average) hint that generated interactions are

plausible. The formulas for Div and MMod are provided in

Section 7.

Evaluation of H,O|I. We compare the performance of

TriDi with a model s-TriDi-HO that has the same archi-

tecture but is trained specifically on H,O|I task (similar to

s-TriDi-OI and s-TriDi-HI in Tables 1 and 2 of the main

paper). We evaluate the methods in two modes: sampling

conditioned on contact maps (CM) and conditioned on text

query (Text). The results are summarized in Table S5. TriDi

benefits from joint training on all the tasks together, generat-

ing a more diverse and higher quality distribution compared

to the model trained specifically on one task. Results also

demonstrate that text provides weaker conditioning, the re-

sulting distribution exhibits slightly less diversity compared

to the distribution of generations from contact maps.

We choose s-TriDi-HO as a baseline because, to the

best of our knowledge, there are no existing methods that



BEHAVE

Method
H|O, I O|H, I I|H,O H,O|I

DIV → MMod→ Accc ↑ DIV → MMod→ Accc ↑ DIV → MMod→ Accc ↑ DIV → MMod→ Accc ↑

GT 4.32 4.15 - 2.32 2.20 - 6.68 6.16 - 4.99 4.75 -

TriDi 4.43 4.23 94.5± 1.2 2.34 2.21 94.8± 1.2 5.29 4.75 96.2± 0.1 5.25 4.98 94.9± 1.5

BEHAVE

Method
H, I|O O, I|H H,O, I

DIV → MMod→ Presencec ↑ DIV → MMod→ Presencec ↑ DIV → MMod→ Presencec ↑

GT 8.09 7.55 - 7.15 6.62 - 8.47 7.92 -

TriDi 8.86 8.16 98.8± 0.1 7.89 7.15 99.3± 0.1 9.28 8.73 96.1± 2.2

GRAB

Method
H|O, I O|H, I I|H,O H,O|I

DIV → MMod→ Accc ↑ DIV → MMod→ Accc ↑ DIV → MMod→ Accc ↑ DIV → MMod→ Accc ↑

GT 5.95 5.18 - 2.33 1.53 - 4.33 3.77 - 6.45 5.46 -

TriDi 6.79 5.90 96.7± 0.8 2.26 1.53 97.5± 0.7 3.52 3.07 98.2± 0.1 7.39 6.88 97.7± 0.8

GRAB

Method
H, I|O O, I|H H,O, I

DIV → MMod→ Presencec ↑ DIV → MMod→ Presencec ↑ DIV → MMod→ Presencec ↑

GT 7.43 6.60 - 5.04 4.17 - 7.85 6.81 -

TriDi 8.32 7.68 99.7± 0.1 5.08 4.39 99.3± 0.1 9.08 8.61 97.3± 1.9

Table S4. Evaluation of diversity and multi-modality for all sampling modes. The variance of the distribution generated by TriDi is on

par with the variance of the GT data, which means that the generated samples are non-trivial. At the same time high contact accuracy (96.3

on average) and contact presence (98.4 on average) hint that generated interactions are plausible.

BEHAVE

Method
H,O|I

1-NNA (→ 50) COV↑ MMD↓

s-TriDi-HO (Ours) (CM) 71.75±0.3 47.81±0.5 3.15±0.01

s-TriDi-HO (Ours) (Text) 74.18±0.2 46.33±0.2 3.21±0.02

TriDi (Ours) (CM) 70.03±0.1
48.47±0.1

3.07±0.02

TriDi (Ours) (Text) 70.14±0.3 48.10±0.4 3.10±0.02

GRAB

Method
H,O|I

1-NNA (→ 50) COV↑ MMD↓

s-TriDi-HO (Ours) (CM) 88.81±0.6 36.29±0.6 3.10±0.08

s-TriDi-HO (Ours) (Text) 89.61±0.3 34.81±0.2 3.28±0.03

TriDi (Ours) (CM) 87.53±0.4 37.71±0.1
3.05±0.01

TriDi (Ours) (Text) 88.56±0.3
37.42±0.1 3.19±0.02

Table S5. Quality of Generated Distribution for H,O|I. TriDi

outperforms s-TriDi-HO in both sampling from contact maps and

text queries. Text provides weaker conditioning than contact maps,

thus the resulting distribution exhibits slightly less diversity.

are able to generate static human-object interaction from

text. We attempted to adapt CG-HOI [4] to consider static

samples instead of motion. However, we observed that the

model failed to converge after being adapted to our setting

(training on static examples from GRAB and BEHAVE).

Our hypothesis is that CG-HOI is designed to work with

motion and is initially trained on a relatively small scale

dataset (e.g., 500 short motion sequences for BEHAVE),

thus generalization to significantly larger data (e.g., 130k

static samples for GRAB and BEHAVE) might be too chal-

lenging for this model.

Generalization to unseen data. We provide qualitative

examples of TriDi on eight unseen objects in two sampling

modes in Fig. S4. The model is able to generate realistic

interactions for objects with known functionality. We also

include more examples for interaction reconstruction on the

DAMON dataset in Figure S5.

Ablations Here, we report the quantitative evaluations of

our ablations described in the main paper. Table S6 covers

the quality of the generated distributions, while Table S7

covers geometrical consistency of the generation.

Evaluation of penetration. We compute SDF-based pen-

etration metrics in Tab.S8: average min. dist. between H

and O (Min. D. [cm.]), contact percentage and penetra-

tion score (C%, Psc[cm.]), CHOIS [19]), penetration depth

(PD[cm.], DiffH2O [3]). TriDi’s results are close to values

computed for ground-truth data, outperforming the base-

lines that generate floaters and more penetrations.

Qualitative results This section includes additional qual-

itative results on BEHAVE (Figure S9) and GRAB (Figure



Figure S4. Generalization to unseen geometry. TriDi samples from p(H, I|O) and p(O, I|H) with unseen objects.
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Figure S5. Interaction reconstruction. DECO [14] annotates human H and contact I for the RGB image, while our TriDi recovers the

object O, showing generalization on unseen data distributions.



BEHAVE

Method
H, I|O O, I|H

1-NNA (→ 50) COV↑ MMD↓ 1-NNA (→ 50) COV↑ MMD↓

TriDi 67.89±0.3 47.81±0.2
1.352±0.005

63.72±0.3
51.71±0.1

0.166±0.001

NoGuide 68.04±0.5
48.87±0.2 1.355±0.002 63.80±0.4 51.62±0.3 0.167±0.001

(H,O) 68.19±0.4 48.57±0.1 1.373±0.006 65.18±0.5 50.85±0.2
0.166±0.001

NoAug 69.74±0.3 46.21±0.3 1.409±0.009 69.39±0.3 46.20±0.3 0.184±0.002

GRAB

Method
H, I|O O, I|H

1-NNA (→ 50) COV↑ MMD↓ 1-NNA (→ 50) COV↑ MMD↓

TriDi 82.71±0.5 42.76±0.3 0.930±0.012
65.02±0.7 48.84±1.2 0.268±0.011

NoGuide 82.99±0.5 41.74±1.0 0.957±0.007 65.64±0.4 47.98±1.3 0.269±0.012

(H,O) 82.40±1.0 42.53±1.2 0.996±0.014 66.58±1.7
49.23±0.4

0.262±0.002

NoAug 83.05±1.0
43.78±0.6

0.878±0.012 67.38±0.3 46.11±0.3 0.275±0.006

Table S6. Ablation - Quality of Generated Distribution. Impact of augmentation, I diffusion, and guidance.

BEHAVE

Method
H, I|O O, I|H

MPJPE↓ MPJPE-PA↓ Acccont ↑ Ev2v ↓ Ecenter ↓ Acccont ↑

TriDi 20.8 12.3 95.5/96.5 28.0 15.3 95.9/96.1
NoGuide 21.5 12.4 96.0/96.5 28.1 15.4 96.2/96.2
(H,O) 21.9 12.7 96.0 / NA 28.4 15.6 96.1 / NA

NoAug 23.2 12.9 95.4 / 96.2 31.0 17.8 95.5 / 96.0

GRAB

Method
H, I|O O, I|H

MPJPE↓ MPJPE-PA↓ Acccont ↑ Ev2v ↓ Ecenter ↓ Acccont ↑

TriDi 15.3 11.1 98.0/98.3 6.9 5.0 99.0/98.2
NoGuide 16.2 11.3 97.5 / 98.3 9.0 7.5 98.2 / 98.3
(H,O) 17.3 11.8 97.3 / NA 9.5 7.9 98.0 / NA

NoAug 14.1 10.4 98.2/98.4 7.2 5.2 98.9 / 98.5

Table S7. Ablation - Geometrical Consistency of Generation.

Impact of augmentation, I diffusion, and guidance.

BEHAVE

Method
H, I|O O, I|H

Min. D.↓ C% ↑ PD ↓ Psc ↓ Min. D.↓ C% ↑ PD ↓ Psc ↓

Data 0.65 99.6 1.73 0.03 0.65 99.6 1.73 0.03
ObjPOP + cVAE - - - - 1.25 92.8 2.8 0.07

GNet 1.50 91.9 3.6 0.08 - - -

TriDi (Ours) 0.74 96.5 2.6 0.07 0.56 97.7 2.38 0.05

GRAB

Method
H, I|O O, I|H

Min. D.↓ C% ↑ PD ↓ Psc ↓ Min. D.↓ C% ↑ PD ↓ Psc ↓

Data 0.08 100.0 0.46 0.0012 0.08 100.0 0.46 0.0012
ObjPOP + cVAE - - - - 4.98 60.1 0.17 0.0005
GNet 5.99 58.9 0.18 0.0002 - - -

TriDi (Ours) 0.26 99.3 0.79 0.0052 0.29 98.8 0.81 0.0048

Table S8. Penetration analysis.

S10), and introduces examples from InterCap (Figure S7)

and OMOMO (Figure S8).

Comparison with baselines In Fig. S11 we provide an

extended comparison with baselines, showing 3 generated

samples per same input.

4. Broader Impacts

Our method provides an invaluable tool for general con-

tent creation and supports analysis of different disciplines

like behavioral sciences or ergonomic studies. Since our

method studies human interaction, analysis of subjects’ be-

havior may be included in surveillance applications, leading

to privacy issues. However, at the present date, acquiring

the 3D data used in our method cannot be easily done with-

out the consensus of the target subject.

5. Datasets

BEHAVE. BEHAVE [2] captures 8 subjects interacting

with 20 different objects, represented as SMPL+H meshes

and global configuration, respectively. We downsample the

30fps train sequences to 10fps and consider the official

1fps test subset.

GRAB. We use the subset of GRAB [13] introduced in

[12]. This subset includes 10 subjects interacting with 20

objects. The 120fps train and test sequences are downsam-

pled to 1fps. The test set consists of interactions performed

by subjects 9 and 10.

InterCap. We downsample the original 30fps sequences

to 10fps and follow the train-test split provided by Vis-

Tracker [17]: Data from subjects 1-8 is used for training,

and sequences from subjects 9 and 10 are used for evalua-

tion.

OMOMO. This dataset captures 17 humans interacting

with 15 objects. We employ the official split, using the first

15 subjects for training and subjects 16,17 for testing, and

downsample all the sequences to 10fps.



Refinement

Refinement

Figure S6. Post-processing refinement result. Example results

demonstrating the effectiveness of the post-processing refinement.

Optionally, TriDi results can be refined using an optimization pro-

cedure that improves fine hand details.

6. Post-processing refinement

Motivation. In some cases, TriDi’s samples may miss

perfect plausibility of fine grained details, especially for

smaller objects. Such behavior is naturally caused by a

lack of detailed hand modeling in the majority of the train-

ing data. To counter this problem, we introduce a post-

processing refinement. We demonstrate qualitative exam-

ples of post-processing refinement in Fig. S6 to show ex-

tended capabilities of TriDi. The proposed refinement pro-

cedure is able to correct mistakes in fine-grained grasps

leading to increased realism of predictions. In the following

paragraphs we provide details on the post-processing refine-

ment. We remark that all the qualitative and quantitative

results in the main paper and supplementary are obtained

without the refinement for a fairer comparison.

Refinement implementation. We take inspiration from

DexGraspNet [16] to design an optimization procedure re-

fining the generated hands. The original refinement mini-

mizes the error term:

Efc+wdisEdis+wpenEpen+wspenEspen+wpriorEprior
(5)

where Efc is a force closure term proposed in [9] that en-

courages the closed grasp, Edis and Epen are, respectively,

attraction and repulsion terms, enforcing contact and penal-

izing penetration, Espen is a self-penetration term, Eprior
is a hand prior term penalizing unrealistic pose configura-

tions. We refer to [16] for detailed definition of the energies.

We add two more terms to the original energy to adapt the

method to our use case. Firstly, we want the final result to

don’t deviate too much from the initial prediction of TriDi,

thus we introduce regularization:

Ereg = ∥θ̂H − θ̃H∥2 (6)

where θ̂H is human pose predicted by TriDi and θ̃H is the

refined human pose. Secondly, we want to explicitly pe-

nalize intersections between hands and objects. To achieve

this we introduce a term inspired by [8, 15] that detects the

collision between hand and object meshes, penalizing the

quantity:

Eisect =
∑

(fH,fO)∈C

[

∑

vH∈fH

∥ −ΨfO
(vH)∥2 +

∑

vO∈fO

∥ −ΨfH
(vO)∥2

]
(7)

where vH ∈ VH and fH ∈ FH are vertices and faces of

the human mesh, vO ∈ VO and fO ∈ FO are vertices and

faces of the object mesh, C is a set of pairs of collided faces,

Ψf : R
3 → R+ is a cone distance field from the face ℧ (full

definition can be found in [15]).

Since TriDi deals with full bodies, the optimization pro-

cedure is split into two stages: first, to fix the global posi-

tioning of the hand (optimization w.r.t. shoulder, elbow, and

wrist joints), next to fix the fine details (optimization w.r.t.

fingers). Therefore, we obtain the following energy terms:

Estage 1 =wdisEdis + wpenEpen+

wregEreg + wisectEisect

Estage 2 =Efc + wdisEdis + wpenEpen+

wspenEspen + wpriorEprior+

wregEreg + wisectEisect

(8)

where weights are wdis = 0.2, wpen = 100, wreg = 20,

wisect = 400 for the first stage, and wdis = wpen =
wisect = 100, wspen = 10, wprior = 0.5, wreg = 10
for the second stage. Optimization setup follows [16] with

1000 iterations for the first stage and 2000 iterations for the

second stage.

7. Error Metrics

Quality of Generated Distribution. To evaluate our fit-

ting to the target distribution, we use three metrics. The

Coverage (COV)[1]:

COV (Sg, Sr) =
|{arg min

r∈Sr

D(g, r)|g ∈ Sg}|
|Sr|

, (9)



where D(g, r) is L2 distance between corresponding fea-

ture vectors, namely, root-centered body joints for humans

and concatenated global position and orientation for ob-

jects.

Minimum Matching Distance (MMD)[1]:

MMD(Sg, Sr) =
1

|Sr|
∑

r∈Sr

min
g∈Sg

D(g, r) (10)

We employ the same definition of D(·, ·) as for COV.

1-Nearest Neighbor Accuracy (1-NNA) [18]. Given a

generated sample g, The idea is to evaluate how a 1-NN

classifier trained on S−g = Sr ∪ Sg − {g} would classify

the sample g. Namely, 1-NNA evaluates the leave-one-out

accuracy over the union dataset:

1-NNA(Sg, Sr) =
∑

X∈Sg
1[NX ∈ Sg] +

∑

Y ∈Sr
1[NY ∈ Sr]

|Sg|+ |Sr|
,

(11)

where NX is the nearest neighbor of X in S−X , 1[·] is the

indicator function. We define nearest neighbors according

to the aforementioned distance metrics D(·, ·).
Diversity (Div) [5]. Diversity measures the variance of

the generated samples. Two subsets S1 = {v1, ..., v|S|} and

S2 = {v′1, ..., v′|S|} of the same size |S| = 200 are drawn

from either Sg or Sr (depending on whether we want to

evaluate the metric for the method or the GT data). The

diversity then is computed as follows:

Div(S1, S2) =
1

|S|

|S|
∑

i=1

∥vi − v′i∥2, (12)

Multimodality (MMod) [5]. Multimodality measures the

variance of the generated samples within the same object

category. For every object class c ∈ 1, ...C two sub-

sets Sc1 = {vc,1, ..., vc,|S|} and Sc2 = {v′c,1, ..., v′c,|S|}
of the same size |S| = 200 are drawn from either Sg
or Sr. The multimodality is then computed as follows

(S1 = {S1
1 , ..., S

C
1 }, S2 = {S1

2 , ..., S
C
2 }):

MMod(S1, S2) =
1

C ∗ |S|
C
∑

c=1

|S|
∑

i=1

∥vc,i − v′c,i∥2, (13)

Geometrical Consistency of Generation. The Ev2v er-

ror measures the average L2 distance between the position

of the predicted object vertices and the ones of the ground

truth:

Ev2v =
1

|VO|
∑

i∈|VO|

∥Vi
O − V̂i

O∥2 (14)

The Ec error measures the average L2 distance between

the position of the predicted object center and the one of the

ground truth:

Ec =

∥

∥

∥

∥

∥

∥

1

|VO|
∑

i∈|VO|

Vi
O − 1

|V̂O|
∑

i∈|V̂O|

V̂i
O

∥

∥

∥

∥

∥

∥

2

. (15)

We complement the reconstruction metrics with the con-

tact accuracy metric Acccont:

Acccont =
1

|VH|
∑

i∈|VH|

1[ϕ̂iI = ϕiI ], (16)

where 1 is an indicator function.
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