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Supplementary Material

Due to space constraints, some details were omitted from
the main paper. We therefore include additional theoretical
developments (section A) and experimental results (section
C) in this appendix.

A. Our Theory Development
This section contains the proofs and derivations of our theory
development to support the main submission.

We first start with the following theorem, which is
inspired by the general PAC-Bayes in [2].

Theorem 2. With the assumption that adding Gaussian
perturbation will raise the test error: LD(θ) ≤
Eϵ∼N (0,σ2I) [LD(θ + ϵ)]. Let T be the number of parameter
θ, and N be the cardinality of S, then the following
inequality is true with the probability 1− δ:

LD (θ) ≤ Eϵ∼N (0,σ2I) [LS(θ + ϵ)] +
1√
N

[
1

2
+

T

2
log
(
1 +

||θ||2

Tσ2

)
+ log

1

δ
+ 6 log(N + T ) +

L2

8

]
,

where L is the upper-bound of the loss function.

Proof. We use the PAC-Bayes theory for P = N (0, σ2
P IT )

and Q = N (θ, σ2IT ) are the prior and posterior
distributions, respectively.

By using the bound in [2], with probability at least 1− δ
and for all β > 0, we have:

Eθ∼Q [LD(θ)] ≤ Eθ∼Q [LS(θ)]

+
1

β

[
KL(Q∥P ) + log

1

δ
+Ψ(β,N)

]
,

where we have defined:

Ψ(β,N) = logEPES

[
exp

{
β
(
LD(θ)− LS(θ)

)}]
.

Note that the loss function is bounded by L, according to
Hoeffding’s lemma, we have:

Ψ(β,N) ≤ β2L2

8N
.

By Cauchy inequality:

1√
N

[
T

2
log
(
1 +

||θ||2

Tσ2

)
+

L2

8

]

≥ L

2
√
N

√
T log

(
1 +

||θ||2
Tσ2

)
≥ L,

which means that the theorem is proved since the loss
function is upper bounded by L, following assumptions,
if ||θ||2 ≥ Tσ2

[
exp 4N

T − 1
]
.

Now, we only need to prove the theorem under the case:
||θ||2 ≤ Tσ2

[
exp 4N

T − 1
]
.

We need to specify P in advance since it is a prior
distribution. However, we do not know in advance the value
of θ that affects the KL divergence term. Hence, we build a
family of distribution P as follows:

P =
{
Pj = N (0, σ2

Pj
IT ) : σ2

Pj
= c exp

(1− j

T

)
,

c = σ2
(
1 + exp

4N

T

)
, j = 1, 2, . . .

}
.

Set δj = 6δ
π2j2 , the below inequality holds with probability

at least 1− δj :

Eθ∼Q [LD(θ)] ≤ Eθ∼Q [LS(θ)]

+
1

β

[
KL(Q∥Pj) + log

1

δj
+

β2L2

8N

]
.

Or it can be written as:

Eϵ∼N (0,σ2I) [LD(θ + ϵ)] ≤ Eϵ∼N (0,σ2I) [LS(θ + ϵ)]

+
1

β

[
KL(Q∥Pj) + log

1

δj
+

β2L2

8N

]
.

Thus, with probability 1− δ the above inequalities hold for
all Pj . We choose:

j∗ =

⌊
1 + T log

(
σ2
(
1 + exp{4N/T}

)
σ2 + ∥θ∥2/T

)⌋
.

Since ∥θ∥2

T ≤ σ2
[
exp 4N

T − 1
]
, we get σ2 + ∥θ∥2

T ≤
σ2 exp 4N

T , thus j∗ is well-defined. We also have:

T log
c

σ2 + ∥θ∥2/T
≤ j∗ ≤ 1 + T log

c

σ2 + ∥θ∥2/T

⇒ log
c

σ2 + ∥θ∥2/T
≤ j∗

T
≤ 1

T
+ log

c

σ2 + ∥θ∥2/T

⇒ − 1

T
+ log

σ2 + ∥θ∥2/T
c

≤ −j∗

T
≤ log

σ2 + ∥θ∥2/T
c

⇒ e−1/T σ2 + ∥θ∥2/T
c

≤ e−j∗/T ≤ σ2 + ∥θ∥2/T
c

⇒ σ2 +
∥θ∥2

T
≤ ce

1−j∗
T ≤ e

1
T

(
σ2 +

∥θ∥2

T

)
⇒ σ2 +

∥θ∥2

T
≤ σ2

Pj∗
≤ e

1
T

(
σ2 +

∥θ∥2

T

)
.



Hence, we have:

KL(Q∥Pj∗) =
1

2

[Tσ2 + ∥θ∥2

σ2
Pj∗

− T + T log
σ2
Pj∗

σ2

]
≤ 1

2

[ Tσ2 + ∥θ∥2

σ2 + ∥θ∥2/T
− T + T log

e1/T
(
σ2 + ∥θ∥2/T

)
σ2

]
≤ 1

2

[
1 + T log

(
1 +

∥θ∥2

Tσ2

)]
.

For the term log 1
δj∗

, use the inequality log(1+et) ≤ 1+t

for t > 0:

log
1

δj∗
= log

(j∗)2π2

6δ
= log

1

δ
+ log

(π2

6

)
+ 2 log(j∗)

≤ log
1

δ
+ log

π2

6
+ 2 log

(
1 + T log

σ2
(
1 + exp(4N/T )

)
σ2 + ∥θ∥2/T

)
≤ log

1

δ
+ log

π2

6
+ 2 log

(
1 + T log

(
1 + exp(4N/T )

))
≤ log

1

δ
+ log

π2

6
+ 2 log

(
1 + T

(
1 +

4N

T
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≤ log

1

δ
+ log

π2

6
+ log(1 + T + 4N).

Choosing β =
√
N , with probability at least 1 − δ we

get:

1

β

[
KL(Q∥Pj∗) + log

1

δj∗
+

β2L2

8N

]
≤ 1√

N

[1
2
+

T

2
log
(
1 +

∥θ∥2

Tσ2

)
+ log

1

δ
+ 6 log(N + T )

]
+

L2

8
√
N

.

Thus the theorem is proved.

Back to our context of multi-task learning in which we
have m tasks with each task model: θi = [θsh,θ

i
ns], we can

prove the following theorem.

Theorem 3. With the assumption that adding Gaussian
perturbation will rise the test error: LD(θ

i) ≤
Eϵ∼N (0,σ2I)

[
LD(θ

i + ϵ)
]
. Let Ti be the number of

parameter θi and N be the cardinality of S. We have the
following inequality holds with probability 1− δ (over the
choice of training set S ∼ D):[
Li
D
(
θi
)]m

i=1
≤
[
Eϵ∼N (0,σ2I)

[
LS(θ

i + ϵ)
]
+f i

(
∥θi∥22

) ]m
i=1

,
(17)

where

f i
(
∥θi∥22

)
=

1√
N

[
1

2
+

Ti

2
log
(
1 +

||θ||2

Tiσ2

)
+ log

1

δ
+ 6 log(N + Ti) +

L2

8

]
.

Proof. The result for the base case m = 1 can be
achieved by using Theorem 2 where ξ = δ and f1 is
defined accordingly. We proceed by induction, suppose that
Theorem 3 is true for all i ∈ [n] with probability 1 − δ/2,
which also means:[
Li
D
(
θi
)]n

i=1
≤
[
Eϵ∼N (0,σI)

[
LS(θ

i + ϵ)
]
+f i

(
∥θi∥22

) ]n
i=1

.

Using Theorem 2 for θn+1 and ξ = δ/2, with probability
1− δ/2, we have:

Ln+1
D

(
θn+1

)
≤Eϵ∼N (0,σI)

[
LS(θ

n+1 + ϵ)
]

+ fn+1
(
∥θn+1∥22

)
.

Using the inclusion–exclusion principle, with probability
at least 1− δ, we reach the conclusion for m = n+ 1.

We next prove the result in the main paper. Let us begin
by formally restating the main theorem as follows:

Theorem 4. For any perturbation radius ρsh, ρns > 0, with
probability 1− δ (over the choice of training set S ∼ D) we
obtain:[

Li
D
(
θi
)]m

i=1
≤ (18)

max
∥ϵsh∥2≤ρsh

[
max

∥ϵins∥2≤ρns

Li
S
(
θsh + ϵsh,θ

i
ns + ϵins

)
(19)

+ f i
(
∥θi∥22

)]m
i=1

, (20)

where f i
(
∥θi∥22

)
is defined the same as in Theorem 3.

Proof. Theorem 3 gives us[
Li
D
(
θi
)]m

i=1

≤
[
Eϵ∼N(0,σ2I)

[
Li
S
(
θi + ϵ

)]
+ f i

(
∥θi∥2

)]m
i=1

=

[∫
Eϵins

[
Li
S
(
θsh + ϵsh,θ

i
ns + ϵins

)]
p (ϵsh) dϵsh

+ f i
(
∥θi∥2

)]m
i=1

= Eϵsh

[
Eϵins

[
Li
S
(
θsh + ϵsh,θ

i
ns + ϵins

)]
+ f i

(
∥θi∥2

)]m
i=1

,

where p(ϵsh) is the density function of Gaussian
distribution; ϵsh and ϵins are drawn from their corresponding
Gaussian distributions.

We have ϵins ∼ N(0, σ2Ins) with the dimension Ti,ns,
therefore ∥ϵins∥ follows the Chi-square distribution. As
proven in [37], we have for all i:

P
(
∥ϵins∥22 ≥ Ti,nsσ

2 + 2σ2
√

Ti,nst+ 2tσ2
)
≤ e−t,∀t > 0

P
(
∥ϵins∥22 < Ti,nsσ

2 + 2σ2
√
Ti,nst+ 2tσ2

)
> 1− e−t



for all t > 0.
Select t = ln(

√
N), we derive the following bound for

the noise magnitude in terms of the perturbation radius ρns
for all i:

P

(
∥ϵins∥22 ≤ σ2(2 ln(

√
N) + Ti,ns + 2

√
Ti,ns ln(

√
N))

)
> 1− 1√

N
. (21)

Moreover, we have ϵsh ∼ N(0, σ2Ish) with the dimension
Tsh, therefore ∥ϵsh∥ follows the Chi-square distribution. As
proven in [37], we have:

P
(
∥ϵsh∥22 ≥ Tshσ

2 + 2σ2
√
Tsht+ 2tσ2

)
≤ e−t,∀t > 0

P
(
∥ϵsh∥22 < Tshσ

2 + 2σ2
√
Tsht+ 2tσ2

)
> 1− e−t

for all t > 0.
Select t = ln(

√
N), we derive the following bound for

the noise magnitude in terms of the perturbation radius ρsh:

P

(
∥ϵsh∥22 ≤ σ2(2 ln(

√
N) + Tsh + 2

√
Tsh ln(

√
N))

)
> 1− 1√

N
. (22)

By choosing σ less than ρsh√
2 lnN1/2+Tsh+2

√
Tsh lnN1/2

and mini
ρns√

2 lnN1/2+Ti,ns+2
√

Ti,ns lnN1/2
, and referring to

(21,22), we achieve both:

P
(
∥ϵins∥ < ρns

)
> 1− 1

N1/2
,∀i,

P (∥ϵsh∥ < ρsh) > 1− 1

N1/2
.

Finally, we finish the proof as:[
Li
D
(
θi
)]m

i=1

≤ Eϵsh

[
Eϵins

[
Li
S
(
θsh + ϵsh,θ

i
ns + ϵins

)]
+ f i

(
∥θi∥2

)]m
i=1

≤ max||ϵsh||<ρsh

[
max||ϵins||<ρns

Li
S
(
θsh + ϵsh,θ

i
ns + ϵins

)
+

(
1− 1√

N

)
L√
N

+
1√
N

+ f i
(
∥θi∥2

)]m
i=1

.

To reach the final conclusion, we redefine:

f i
(
∥θi∥2

)
=

(
1− 1√

N

)
L√
N

+
1√
N

+ f i
(
∥θi∥2

)
.

Here we note that we reach the final inequality due to the

following derivations:

Eϵsh

[
Eϵins

[
Li
S
(
θsh + ϵsh,θ

i
ns + ϵins

)]]m
i=1

≤
∫
Bsh

[∫
Bi

ns

Li
S
(
θsh + ϵsh,θ

i
ns + ϵins

)
dϵins

+
1√
N

]m
i=1

dϵsh

+

∫
Bc

sh

[∫
Bi

ns

Li
S
(
θsh + ϵsh,θ

i
ns + ϵins

)
dϵins

+
1√
N

]m
i=1

dϵsh

≤
∫
Bsh

[∫
Bi

ns

Li
S
(
θsh + ϵsh,θ

i
ns + ϵins

)
dϵins

+

(
1− 1√

N

)
L√
N

+
1√
N

]m
i=1

dϵsh

≤ max||ϵsh||<ρsh

[
max||ϵins||<ρns

[
Li
S
(
θsh + ϵsh,θ

i
ns + ϵins

)
+

(
1− 1√

N

)
L√
N

+
1√
N

]]m
i=1

,

where Bsh = {ϵsh : ||ϵsh|| ≤ ρsh}, Bc
sh is the complement

set, and Bi
ns =

{
ϵins : ||ϵins|| ≤ ρns

}
.

We also provide a theoretical justification for our gradient
decomposition.

Theorem 5. If
〈
gflat
sh , g

i,loss
sh

〉
≤ 0,∀i and

〈
gloss
sh , gi,flat

sh

〉
≤

0,∀i, the gradient decomposition strategy yields a smaller
sum of the losses and the gradient norms. More formally, we
have[

li
(
θsh − ηgSAM,dec

sh

)
+ ρshs

i
(
θsh − ηgSAM,dec

sh

)]
i

≤
[
li
(
θsh − ηgSAM,dir

sh

)
+ ρshs

i
(
θsh − ηgSAM,dir

sh

)]
i
.

This theorem shows that if the aggregation vector gflat
sh

of the flatness component is non-congruent to gi,loss
sh of

the loss component (i.e., they form an obtuse angle)
and the aggregation gloss

sh of the loss component is also
non-congruent to gi,flat

sh of the flatness component, which
possibly happens in the early stage of training, the gradient
decomposition strategy optimizes the loss and the gradient
norm better. The empirical evidence is given in Figure 2
when the gradient decomposition strategy gains lower loss
values and gradient norms than the direct strategy.

Proof. Given θi
ns, we denote li(θsh) = LS(θsh,θ

i
ns) and

si(θsh) = ∥∇θsh
LS(θsh,θ

i
ns)∥2. We have the gi,SAM

sh

minimizes hi(θsh) = li(θsh) + ρshs
i(θsh). Therefore,



their aggregation gSAM,dir
sh minimizes [hi(θsh)]i. We have

hi (θsh)− hi
(
θsh − ηgSAM,dir

sh

)
≈η
〈
gSAM,dir
sh ,∇θsh

hi (θsh)
〉

=η
〈
gSAM,dir
sh ,∇θsh

li (θsh)
〉
+ ηρsh

〈
gSAM,dir
sh ,∇θsh

si (θsh)
〉

=η
〈
gSAM,dir
sh , gi,loss

sh

〉
+ ηρsh

〈
gSAM,dir
sh , gi,flat

sh

〉
.

hi (θsh)− hi
(
θsh − ηgSAM,dec

sh

)
≈η
〈
gSAM,dec
sh ,∇θsh

hi (θsh)
〉

=η
〈
gSAM,dec
sh ,∇θsh

li (θsh)
〉
+ ηρsh

〈
gSAM,dec
sh ,∇θsh

si (θsh)
〉

=η
〈
gSAM,dec
sh , gi,loss

sh

〉
+ ηρsh

〈
gSAM,dec
sh , gi,flat

sh

〉
=η
〈
gloss
sh + gflat

sh , g
i,loss
sh

〉
+ ηρsh

〈
gloss
sh + gflat

sh , g
i,flat
sh

〉
=η
〈
gloss
sh , gi,loss

sh

〉
+ ηρsh

〈
gflat
sh , g

i,flat
sh

〉
+ η

〈
gflat
sh , g

i,loss
sh

〉
+ ηρsh

〈
gloss
sh , gi,flat

sh

〉
≤η
〈
gloss
sh , gi,loss

sh

〉
+ ηρsh

〈
gflat
sh , g

i,flat
sh

〉
.

Due to the definition of gloss
sh and gflat

sh , we have〈
gloss
sh , gi,loss

sh

〉
≥
〈
gSAM,dir
sh , gi,loss

sh

〉
and

〈
gflat
sh , g

i,flat
sh

〉
≥〈

gSAM,dir
sh , gi,flat

sh

〉
. This follows that

hi (θsh)− hi
(
θsh − ηgSAM,dir

sh

)
≤ hi (θsh)− hi

(
θsh − ηgSAM,dec

sh

)
⇒hi

(
θsh − ηgSAM,dec

sh

)
≤ hi

(
θsh − ηgSAM,dir

sh

)
⇒li

(
θsh − ηgSAM,dec

sh

)
+ ρshs

i
(
θsh − ηgSAM,dec

sh

)
≤ li

(
θsh − ηgSAM,dir

sh

)
+ ρshs

i
(
θsh − ηgSAM,dir

sh

)
,∀i

⇒
[
li
(
θsh − ηgSAM,dec

sh

)
+ ρshs

i
(
θsh − ηgSAM,dec

sh

)]
i

≤
[
li
(
θsh − ηgSAM,dir

sh

)
+ ρshs

i
(
θsh − ηgSAM,dir

sh

)]
i
.

B. Gradient aggregation strategies overview
This section details how the gradient aggregate operation
is defined according to recent gradient-based multi-task
learning methods that we employed as baselines in the
main paper, including MGDA [70], PCGrad [77], CAGrad
[44] and IMTL [46]. Assume that we are given m vectors

g1, g2, . . . , gm represent task gradients. Typically, we aim
to find a combined gradient vector as:

g = gradient aggregate(g1, g2, . . . , gm).

B.1. Multiple-gradient descent algorithm - MGDA
[70] applies MGDA [16] to find the minimum-norm gradient
vector that lies in the convex hull composed by task gradients
g1, g2, . . . , gm:

g = argmin||
m∑
i=1

wig
i||2, s.t.

m∑
i=1

wi = 1 and wi ≥ 0∀i.

This approach can guarantee that the obtained solutions lie
on the Pareto front of task objective functions.

B.2. Projecting conflicting gradients - PCGrad
PCgrad resolves the disagreement between tasks by
projecting gradients that conflict with each other, i.e.
⟨gi, gj⟩ < 0, to the orthogonal direction of each other.
Specifically, gi is replaced by its projection on the normal
plane of gj :

gi
PC = gi − gi · gj

||gj ||2
gj .

Then compute the aggregated gradient based on these
deconflict vectors g =

∑m
i gi

PC.

B.3. Conflict Averse Gradient Descent - CAGrad
CAGrad [44] seeks a worst-case direction in a local ball
around the average gradient of all tasks, g0, that minimizes
conflict with all of the gradients. The updated vector is
obtained by optimizing the following problem:

max
g∈R

min
i∈[m]

⟨gi,g⟩ s.t. ||g − g0|| ≤ c||g0||,

where g0 = 1
m

∑m
i gi is the averaged gradient and c is a

hyper-parameter.

B.4. Impartial multi-task learning - IMTL
IMTL [46] proposes to balance per-task gradients by finding
the combined vector g, whose projections onto {gi}mi=1 are
equal. Following this, they obtain the closed-form solution
for the simplex vector w for reweighting task gradients:

w = g1U⊤
(
DU⊤

)−1

where ui = gi/
∥∥gi
∥∥, U =

[
u1 − u2, · · · ,u1 − um

]
, and

D =
[
g1 − g2, · · · , g1 − gm

]
The aggregated vector is

then calculated as g =
∑m

i wig
i.

C. Implementation Details
In this part, we provide implementation details regarding the
empirical evaluation in the main paper, along with additional
comparison experiments. All experiments are run on a single
A100 GPU (40 GB VRAM).



C.1. Baselines
In this subsection, we briefly introduce some of the
comparative methods that appeared in the main text:
• Linear scalarization (LS) minimizes the unweighted sum

of task objectives
∑m

i Li(θ).
• Scale-invariant (SI) aims toward obtaining similar

convergent solutions even if losses are scaled with different
coefficients via minimizing

∑m
i logLi(θ).

• Random loss weighting (RLW) [41] is a simple yet
effective method for balancing task losses or gradients
by random weights.

• Dynamic Weight Average (DWA) [47] simply adjusts the
weighting coefficients by taking the rate of change of loss
for each task into account.

• GradDrop [13] presents a probabilistic masking process
that algorithmically eliminates all gradient values having
the opposite sign w.r.t a predefined direction.

C.2. Image classification
Datasets.
- Multi-MNIST

+

. Following the protocol of [70],
we set up three Multi-MNIST experiments with
ResNet18 [25], namely: MultiFashion, MultiMNIST
and MultiFashion+MNIST. In each dataset, two images are
sampled uniformly from the MNIST [38] or Fashion-MNIST
[75], then one is placed on the top left, and the other is on
the bottom right. We thus obtain a two-task learning that
requires predicting the categories of the digits or fashion
items on the top left (task 1) and the bottom right (task 2),
respectively.
- CelebA [52] is a face dataset with 200K images and 40
attributes, forming a 40-class multi-label classification
problem.

Network Architectures. For two datasets in this problem,
Multi-MNIST and CelebA, we replicate experiments
from [42, 70] by respectively using the Resnet18 (11M
parameters) and Resnet50 (23M parameters) [25] with
the last output layer removed as the shared encoders and
constructing linear classifiers as the task-specific heads, i.e.
2 heads for Multi-MNIST and 40 for CelebA, respectively.

Training Details. We train the all the models under our
proposed framework and baselines using:
• Multi-MNIST: Adam optimizer [34] with a learning rate

of 0.001 for 200 epochs using a batch size of 256. Images
from the three datasets are resized to 36× 36.

• CelebA: Batch-size of 256 and images are resized to 64×
64 × 3. Adam [34] is used again with a learning rate of
0.0005, which is decayed by 0.85 for every 10 epochs, our
model is trained for 50 epochs in total.
Regarding the hyper-parameter for SAM [20], we use

their adaptive version [35] where both ρsh and ρns are set

+
https://github.com/Xi-L/ParetoMTL

equally and extensively tuned from 0.005 to 5. More details
can be found in the public source code.

C.3. Scene understanding
Two datasets used in this problem are NYUv2 and
CityScapes:

- NYUv2
+

is an indoor scene dataset that contains 3
tasks: 13-class semantic segmentation, depth estimation, and
surface normal prediction.

- CityScapes
+

has 19 classes of street-view images, which
are coarsened into 7 categories to create two tasks: semantic
segmentation and depth estimation.

Similar to [62], all images in the NYUv2 dataset are
resized to 288 × 384 while all images in the CityScapes
dataset are resized to 128 × 256 to speed up the training
process. We follow the exact protocol in [62] for
implementation. Specifically, SegNet [3] is adopted as
the architecture for the backbone and Multi-Task Attention
Network MTAN [47] is applied on top of it. We train each
method for 200 epochs using Adam optimizer [34] with an
initial learning rate of 1e−4 and reduce it to 5e−5 after 100
epochs. We use a batch size of 2 for NYUv2 and 8 for
CityScapes. The last 10 epochs are averaged to get the final
results, and all experiments are run with three random seeds.
More details can be found in the public source code.

D. Additional Results
To further show the improvement of our proposed training
framework over the conventional one, this section provides
additional comparison results in terms of qualitative results,
predictive performance, convergent behavior, loss landscape,
model sharpness, and gradient norm. We also complete the
ablation study in the main paper by providing results on all
three datasets in the Multi-MNIST dataset.

D.1. Image segmentation qualitative result
In this section, we provide qualitative results of our
method of the CityScapes experiment. We compare our
proposed method against its main baseline by highlighting
typical cases where our method excels in generalization
performance. Figure 4 shows some visual examples of
segmentation outputs on the test set. Note that in the
CityScapes dataset, the “void” class is identified as unclear
and pixels labeled as void do not contribute to either
objective or score [14].

While there is only a small gap between the segmentation
performance of ERM and ours, we found that a small area,
which is the car hood and located at the bottom of images,
is often incorrectly classified. For example, in Figure 4, the
third and fourth rows compare the prediction of SegNet [3]
with ERM training and with our proposed method. It can be
+
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(a) A training sample (after augmentation)

(b) Corresponding original image (before augmentation)

(c) Predictions on an unseen image

(d) Predictions on an unseen image

Figure 4. Semantic segmentation prediction comparison on CityScapes . From left to right are input images, ground truth, and segmentation
outputs from SegNet [3] using ERM training and sharpness-aware training. Regions that are represented in gray color are ignored during
training. (Best viewed in color).

seen that both of them could not detect this area correctly,
this is because this unclear “void” class did not appear
during training. Even worse, the currently employed data
augmentation technique in the codebase of Nash-MTL and
other recent multi-task learning methods [44, 62] consists
of RandomCrop, which often unintentionally excludes edge
regions. For example, Figure 4a shows an example fed to
the neural network for training, which excludes the car hood

and its logo, compared to the original image (Figure 4b).
Therefore, we can consider this ”void” class as a novel class
in this experiment, since its appearance is ignored in both
training and evaluation. Even though, in Figures 4c and
4d our training method is still able to distinguish between
this unknown area and other nearby known classes, which
empirically shows the robustness and generalization ability
of our method over ERM.



D.2. Predictive performance
In this part, we provide experimental justification for
an intriguing insight into the connection between model
sharpness and model calibration. Empirically, we found that
when a model converges to flatter minima, it tends to be
more calibrated. We start by giving the formal definition
of a well-calibrated classification model and three metrics
to measure the calibration of a model, then we analyze our
empirical results.

Consider a C-class classification problem with a test set
of N samples given in the form (xi, yi)

N
i=1 where yi is the

true label for the sample xi. Model outputs the predicted
probability for a given sample xi to fall into C classes, is
given by

p̂(xi) = [p̂(y = 1|xi), . . . , p̂(y = C|xi)].

p̂(y = c|xi) is also the confidence of the model when
assigning the sample xi to class c. The predicted label
ŷi is the class with the highest predicted value, p̂(xi) :=
maxc p̂(y = c|xi). We refer to p̂(xi) as the confidence score
of a sample xi.

Model calibration is a desideratum of modern deep
neural networks, which indicates that the predicted
probability of a model should match its true probability.
This means that the classification network should be not only
accurate but also confident about its prediction, i.e. being
aware of when it is likely to be incorrect. Formally stated,
the perfect calibration [22] is:

P (ŷ = y|p̂ = q) = q,∀q ∈ [0, 1]. (23)

Metric. The exact computation of Equation 23 is
infeasible, thus we need to define some metrics to evaluate
how well-calibrated a model is.
• Brier score ↓ (BS) [6] assesses the accuracy of a model’s

predicted probability by taking into account the absolute
difference between its confidence for a sample to fall into
a class and the true label of that sample. Formally,

BS =
1

N

N∑
i=1

C∑
c=1

(p̂(y = c|xi)− 1[yi = c])
2
.

• Expected calibration error ↓ (ECE) compares the
predicted probability (or confidence) of a model to its
accuracy [22, 60]. To compute this error, we first bin
the confidence interval [0, 1] into M equal bins, then
categorize data samples into these bins according to their
confidence scores. We finally compute the absolute value
of the difference between the average confidence and the
average accuracy within each bin, and report the average
value over all bins as the ECE. Specifically, let Bm denote
the set of indices of samples having their confidence scores

belonging to the mth bin. The average accuracy and the
average confidence within this bin are:

acc(Bm) =
1

|Bm|
∑
i∈Bm

1[ŷi = yi],

conf(Bm) =
1

|Bm|
∑
i∈Bm

p̂(xi).

Then the ECE of the model is defined as:

ECE =

M∑
m=1

|Bm|
N

|acc(Bm)− conf(Bm)|.

In short, the lower ECE neural networks obtain, the more
calibrated they are.

• Predictive entropy (PE) is a widely-used measure of
uncertainty [36, 56, 65] via the predictive probability of
the model output. When encountering an unseen sample,
a well-calibrated model is expected to yield a high PE,
representing its uncertainty in predicting out-of-domain
(OOD) data.

PE =
1

C

C∑
c=1

−p̂(y = c|xi) log p̂(y = c|xi).

Figures 5 and 6 plot the distribution of the model’s
predicted entropy in the case of in-domain and out-domain
testing, respectively. We can see when considering the
flatness of minima, the model shows higher predictive
entropy on both in-domain and out-of-domain, compared
to ERM. This also means that our model outputs high
uncertainty prediction when it is exposed to a sample from a
different domain.
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Figure 5. Histograms of predictive entropy of ResNet18 [25]
on in-domain dataset, train and test on MultiMNIST (left) and
MultiFashion (right). We use the orange lines to denote ERM
training while blue lines indicate our proposed method.

Here, we calculate the results for both tasks 1 and 2 as
a whole and plot their ECE in Figure 7. When we look
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Figure 6. Out of domain: model is trained on MultiMNIST,
then tested on MultiFashion (left) and vice versa (right). Models
trained with ERM give over-confident predictions as their predictive
entropy concentrates around 0.

at the in-domain prediction in more detail, our model still
outperforms ERM in terms of expected calibration error. We
hypothesize that considering a flat minima optimizer not only
lowers errors across tasks but also improves the predictive
performance of the model.

Dataset Task Multi-Fashion Multi-Fashion+MNIST MultiMNIST

ERM
Top left 0.237 0.055 0.082

Bottom right 0.254 0.217 0.106

Average 0.246 0.136 0.094

Ours
Top left 0.172 0.037 0.059

Bottom right 0.186 0.189 0.075

Average 0.179 0.113 0.067

Table 8. Brier score on Multi-Fashion, Multi-Fashion+MNIST and
MultiMNIST datasets. We use the bold font to highlight the best
results.

We also report the Brier score and ECE for each task in
Table 8 and Table 9. As can be observed from these tables,
our method shows consistent improvement in the model
calibration when both scores decrease over all scenarios.

Dataset Task Multi-Fashion Multi-Fashion+MNIST MultiMNIST

ERM
Top left 0.113 0.027 0.039

Bottom right 0.121 0.104 0.050

Average 0.117 0.066 0.045

Ours
Top left 0.034 0.015 0.022

Bottom right 0.032 0.083 0.028

Average 0.033 0.049 0.025

Table 9. Expected calibration error on Multi-Fashion, Multi-
Fashion+MNIST and MultiMNIST datasets. Here we set the
number of bins equal to 10.

D.3. Effect of choosing perturbation radius ρ.
The experimental results analyzing the sensitivity of the
model w.r.t ρ are given in Figure 8. We evenly picked ρ from
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Figure 7. The predictive performance (measured by the expected
calibration error) of neural networks has been enhanced by using
our proposed training method (right column).

0 to 3.0 to run experiments on three Multi-MNIST datasets.
We find that the average accuracy of each task is rather stable
from ρ = 0.5, which means the effect of different values
of ρ in a reasonably small range is similar. It can also be
easy to notice that the improvement tends to saturate when
ρ ≥ 1.5.
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Figure 8. Average accuracy when varying ρ from 0 to 3.0 (with
error bar from three independent runs).



D.4. Loss landscape
Firstly, following [39], we provide additional visual
comparisons of the loss landscapes trained with standard
training and with our framework across two tasks of three
datasets of Multi-MNIST in Figure 9. These are test loss
surfaces of checkpoints that have the highest validation
accuracy. The solution found by our proposed method not
only mitigates the test loss sharpness for both tasks but
also can reduce the test loss value itself, in comparison to
traditional ERM. This is a common behavior when using flat
minimizers as the gap between train and test performance
has been narrowed [27, 30].

(a) MultiMNIST

(b) MultiFashion

(c) MultiFashion+MNIST

Figure 9. Loss landscapes of task 1 and task 2 on MultiMNIST,
MultiFashion and MultiFashion+MNIST, respectively.

D.5. Model robustness against weight perturbation
Thirdly, to verify that SAM can orient the model to the
common flat and low-loss region of all tasks, we measure
the model performance within a r-radius Euclidean ball. To
be more specific, we perturb parameters of two converged
models by ϵ, which lies in a r-radius ball and plot the
accuracy of the perturbed models of each task as we
increase r from 0 to 1000. At each value of r, 10 different
models around the r−radius ball of the converged model are
sampled.
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Figure 10. Accuracy within r-radius ball. Solid/dashed lines
denote performance on train/test sets.

In Figure 10, the accuracy of the model trained using our
method remains at a high level when noise keeps increasing
until r = 800. This also gives evidence that our model found
a region that changes slowly in loss. By contrast, the naively
trained model loses its predictive capabilities as soon as the
noise appears and becomes a dummy classifier that attains
10% accuracy in a 10-way classification.

D.6. Gradient conflict
Secondly, in the main paper, we measure the percentage of
gradient conflict on the MultiFashion+MNIST dataset. Here,
we provide the full results on three different datasets. As
can be seen from Figure 11, there is about half of the mini-
batches lead to the conflict between task 1 and task 2 when
using traditional training. Conversely, our proposed method
significantly reduces such confliction to less than 5% via
updating the parameter toward flat regions.

D.7. Training curves
Thirdly, we compare the test accuracy of trained models
under the two settings in Fig. 12. It can be seen that
from the early epochs (20-th epoch), the flat-based method
outperforms the ERM-based method on all tasks and datasets.
Although the ERM training model is overfitted after such a
long training, our model retains a high generalizability, as
discussed throughout previous sections.

Furthermore, we also plot the training accuracy curves
across experiments in Figure 13 to show that training
accuracy scores of both ERM and our proposed method
are similar and reach ≈ 100% from 50-th epoch,
which illustrates that the improvement is associated with
generalization enhancement, not better training.

D.8. Model sharpness
Fourthly, Figure 14 displays the evolution of ρ-sharpness
of models along training epochs under conventional loss
function (ERM) and worst-case loss function (ours) on
training sets of three datasets from Multi-MNIST, with
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Figure 11. Task gradient conflict proportion of models trained with our proposed method and ERM across MultiFashion,
MultiFashion+MNIST, and MultiMNIST datasets (columns).
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Figure 12. Test accuracy of models trained with our proposed method and ERM across 2 tasks (rows) of MultiFashion, MultiFashion+MNIST
and MultiMNIST datasets (columns).
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Figure 13. Train accuracy of models trained with our proposed method and ERM across 2 tasks (rows) of MultiFashion,
MultiFashion+MNIST and MultiMNIST datasets (columns).



multiple values of ρ. We can clearly see that under
our framework, for both tasks, the model can guarantee
uniformly low loss value in the ρ-ball neighborhood of
parameter across training process. In contrast, ERM
suffers from sharp minima from certain epochs when the
model witnesses a large gap between the loss of worst-case
perturbed model and current model. This is the evidence
for the benefit that our framework brings to gradient-based
methods, which is all tasks can concurrently find flat minima
thus achieving better generalization.

D.9. Gradient norm
Finally, we demonstrate the gradient norm of the loss
function w.r.t the worst-case perturbed parameter of each
task. On the implementation side, we calculate the
magnitude of the flat gradient gi,flat for each task at different
values of ρ in Figure 15. As analyzed by Equation 6 from
the main paper, following the negative direction of gi,SAM

sh

will lower the L2 norm of the gradient, which orients the
model towards flat regions. This is empirically verified in
Figure 15. In contrast, as the number of epochs increases,
gradnorm of the model trained with ERM tends to increase
or fluctuate around a value higher than that of model trained
with SAM.

E. Discussion and Limitations
The primary limitations of our work lie in time and space
complexity. Specifically, our method demands an additional
forward-backward pass to compute the worst-case gradient
for each task, resulting in approximately twice the runtime
compared to ERM counterparts. This could potentially be
mitigated by employing a periodic update strategy as in [50],
or by applying weight perturbation on a randomly chosen set
of weights and data [18], or even applying proposed training
procedure on last few epochs [82]. However, we leave this
exploration for future work, as the main focus of our paper
is to demonstrate the effectiveness of encouraging flatness in
MTL. In terms of space complexity, our approach requires
approximately double the memory compared to traditional
gradient-based methods. This is due to the need to store both
the flat gradient and the loss gradient for each task as part of
our gradient decomposition process.
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Figure 14. Sharpness of models trained with our proposed method and ERM with different values of ρ. For each ρ, the top and bottom row
respectively represents the first and second task, and each column respectively represents each dataset in Multi-MNIST: from left to right are
MultiFashion, MultiFashion+MNIST, MultiMNIST.
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Figure 15. Gradient magnitude at the worst-case perturbations of models trained with our proposed method and ERM with different values
of ρ. For each ρ, the top and bottom row respectively represents the first and second task, and each column respectively represents each
dataset in Multi-MNIST: from left to right are MultiFashion, MultiFashion+MNIST, MultiMNIST.
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