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A. Pseudocode for FED-PRIME

Algorithm 1 Client Design
input: pre-trained model F , dataset Dt, and winter

g , wintra
g

output: intra- and inter-client prompts wintra
p , winter

p

1: initialize prediction head wc

2: initialize wintra
p , winter

p → wintra
g ,winter

g

3: optimize wc, wintra
p , winter

p using Eq. (7) and Eq. (8)
4: return wintra

p , winter
p

Algorithm 2 Server Aggregation
input: a set of inter-client prompts (winter

t ↭ (pi
t)

ω
i=1)

n
t=1

output: optimized set of aggregated prompts winter
g

1: initialize alignment model parameters ω
2: for e = 1 to max-iteration do
3: fixing ε, optimizing ω, ε,ω via Eq. (13)
4: freezing ω, ε,ω
5: for t = 1 to n do
6: freezing ε→t

7: optimizing εt via Eq. (14)
8: end for
9: end for

10: winter
g → ω

11: for q = 1 to n↑ ϑ do
12: winter

g → winter
g \ ωq if ⊋(t, p) : ϖp,q

t > 0
13: end for
14: return set of aggregated inter-client prompts winter

g

Algorithm 3 Multimodal Federated Prompt-Tuning
input: pre-trained model F and no. of iteration T
output: optimized set of aggregated prompts ω

1: initialize global prompt set ω
2: for e = 1 to T do
3: for t = 1 to n do
4: send ω to client t
5: request winter

t , wintra
t from client t via Alg. 1

6: end for
7: compute wintra

g run FEDAVG on (wintra
t )nt=1

8: update winter
g via running Alg. 2 on (winter

t )nt=1

9: end for
10: return aggregated prompts winter

g , wintra
g

B. Implementation Details
Input. All baselines use inputs from the UPMC Food-
101 dataset, comprising 6, 728 multimodal samples, and the
MM-IMDB dataset, which includes 5, 778 image-text pairs
after the preprocessing. For the text modality, inputs are
tokenized using the BERT-base-uncased tokenizer, as out-
lined in [24], with a maximum sequence length of 40 for
UPMC Food-101 and 128 for MM-IMDB. When text is
missing, we use an empty string as a dummy input. For the
image modality, we follow [21, 24] by resizing the shorter
side of the input image to 384 pixels, while keeping the
longer side under 640 pixels to maintain the aspect ratio.
As in [21], we decompose images into 32 ↑ 32 patches. If
the image is missing, we create a dummy image with all
pixel values set to one, as described in [24].
Multimodal Backbone. Following [24], we adopt the pre-
trained multimodal transformer ViLT [21] as our backbone
as it is commonly used in various transformer-based meth-
ods for learning multimodal tasks. ViLT stems from Vi-
sion Transformer [13] and advances to process multimodal
inputs with tokenized texts and patched images. With-
out using modality-specific feature extractors, ViLT is pre-
trained on several large vision-language datasets (e.g., MS-
COCO [28] and Visual Genome [22]) via objectives such as
Image Text Matching (ITM) and Masked Language Model-
ing (MTM).
Model Training Details. To reduce the need for exten-
sive fine-tuning, we freeze the ViLT backbone parameters
and train only the learnable prompts and task-specific layers
(pooler and classifier). Each pool consists of 20 prompts,
from which 5 prompts are selected per input from each
pool—inter- and intra-client ones. These prompts are con-
catenated and added to the initial Multi-Head Self-Attention
(MSA) layer, resulting in a total of 10 prompts for each in-
put. For FED-INTRA and FED-INTER, where only a sin-
gle pool is utilized, the pool still contains 20 prompts. From
this pool, 10 prompts are directly selected, ensuring that the
total number of prompts per input remains consistent with
FED-PRIME. In contrast, FEDAVG-P and FEDMSPLIT-P
attach prompts to the first 6 MSA layers, with each prompt
having a length of 16, resulting in a greater number of
prompts per input.
Baseline Aggregation Details. In FEDAVG-P, the server
aggregation procedure updates the newly trained compo-
nents—namely, the prompts, pooler, and classifier—for
each modality set and subsequently distributes them to the
respective clients. In FEDMSPLIT-P, the original work as-
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Figure 7. t-SNE plots of embeddings prior to classification on MM-IMDB under the Miss Both training scenario for Client #4 (left) and
Client #14 (right), with two subfigures per client.
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Figure 8. t-SNE plots of embeddings prior to classification on UMPC Food-101 under the Miss Image training scenario for Client #4 (left)
and Client #14 (right), with two subfigures per client.

Table 2. Top-1 accuracy of FED-PRIME across varying pool
sizes, reported on UPMC Food-101 dataset.

Pool Size 10 15 20 25 30

Top-1 Test Accuracy 73.94 82.50 82.61 82.72 83.21

sumes that each client possesses a distinct set of modali-
ties, with a uniform modality distribution across all sam-
ples within a given client. This assumption contrasts with
our setting, where clients exhibit heterogeneous and incom-
plete multimodal data distributions. Furthermore, the origi-
nal framework constructs modality-specific encoder blocks,
aggregating similar blocks based on similarity coefficients
that quantify inter-client modality relationships. To adapt
this approach to our setting, we aggregate all modular com-
ponents—including prompts, pooler, and classifier—based
on client similarity while assuming that all clients maintain
a shared set of these modular components, encompassing
all possible modality configurations.
Hyperparameter Settings. All evaluated baselines uti-
lize a batch size of 512 for the UPMC Food-101 dataset

and 256 for MM-IMDB. The training datasets for UPMC
Food-101 and MM-IMDB were randomly partitioned into
20 clients, all of whom participated in every communica-
tion round. We use a Stochastic Gradient Descent (SGD)
optimizer with a base learning rate of 0.05 for Food-101
and 0.01 for IMDB, with a communication round of 250
for faster convergence compared to full fine-tuning. Dur-
ing each round, clients train the global model locally for
1 epoch. The hyperparameter configurations were consis-
tently applied across experimental missing scenarios.

Code Availability and Reproducibility. We release our
full implementation and configurations at https://

github.com/hangpt01/FedPrime. The repository
includes source code, configuration files (e.g., prompt di-
mensions, number of prompts, clustering thresholds, regu-
larization coefficients), and brief guidelines with scripts to
run experiments or adapt the framework to other datasets.

Automatic Hyperparameter Tuning. Beyond the default
settings described above, the repository includes utilities
and scripts to automatically tune key hyperparameters (e.g.,
clustering iteration thresholds, pool sizes, and the number of



Table 3. Resource required of different baselines in each round

Method UPMC Food-101 [46] MM-IMDB [1]
GPU (GB) Time (s) GPU (GB) Time (s)

FEDAVG-P 31.70 245.53 39.07 649.58
FEDMSPLIT-P 34.30 265.19 39.13 755.62
FED-INTER 16.83 315.67 23.73 685.27
FED-INTRA 16.65 253.60 23.31 625.83

FED-PRIME 16.80 240.54 23.68 653.57

active prompts). We also provide implementations of com-
mon tuning methods, namely Grid Search, Random Search,
and Bayesian Optimization, which allow users to efficiently
explore configurations based on validation loss or heuris-
tic rules. These tools reduce the need for extensive manual
searches and simplify adaptation to new problems.

C. Computational Resource Analysis.

Table 3 summarizes the computational resources required
by the evaluated methods. Notably, FEDAVG-P and
FEDMSPLIT-P demonstrate substantially higher GPU
memory usage, such as 31.70 GB and 34.30 GB on
the UPMC Food-101 dataset, nearly double that of
FED-PRIME. This discrepancy can be attributed to their
strategy of prepending prompts in the first six Multi-Head
Self-Attention (MSA) layers out of a total of 12 layers,
which expands sequence lengths and amplifies memory de-
mands for intermediate activations, gradients, and compu-
tations. Moreover, FEDMSPLIT-P further increases com-
putational costs, as it requires estimating similarity across
clients and maintaining a personalized model for each
client. Conversely, FED-PRIME limits the prompt addi-
tion to only the first MSA layer, thereby restricting the aug-
mented sequence length and associated computations to a
single layer. This design significantly reduces the overall
memory overhead. Other variants demonstrate relatively
comparable GPU memory usage. Overall, GPU usage for
the MM-IMDB dataset is higher than for UPMC Food-101,
primarily due to the longer text sequence lengths employed
in the experiments.

In terms of execution time per round, FED-INTER

and FEDMSPLIT-P interchangeably exhibits the longest
runtime. Other methods exhibit similar runtime per-
formance, with approximately a 5-second difference
between FEDAVG-P and FED-PRIME. Importantly,
FED-PRIME demonstrates its efficiency by achieving high
performance while maintaining lower GPU memory re-
quirements and comparable execution time.

D. Additional Ablation Studies
Table 2 demonstrates a clear positive correlation between
pool size and test accuracy, with larger pool sizes consis-
tently yielding higher accuracy. A significant drop in accu-
racy is observed when the pool size decreases from 15 to
10, highlighting a critical threshold for maintaining perfor-
mance. While increasing the pool size from 15 to 30 results
in an overall improvement in accuracy, the rate of improve-
ment diminishes as the pool size grows from 15 to 25. No-
tably, a pool size of 30 achieves the highest accuracy, show-
ing a larger improvement compared to the smaller gains ob-
served when increasing the pool size from 15 to 25. In gen-
eral, while larger pool sizes improve accuracy, the marginal
gains may not justify the extra computational cost. Hence,
a pool size of 20 is selected for all subsequent experiments
in this study, as it provides a practical balance between ac-
curacy and computational efficiency.

E. Additional Prompting Analysis
Fig. 7 illustrates the embeddings at the final round (round
250) for FEDAVG-P and FED-PRIME under the Miss
Both scenario on the MM-IMDB dataset, visualized for two
random clients (Client #4 and Client #14). As shown in the
figure, FEDAVG-P, employing a design that prompts em-
beddings for each missing type separately, possesses dis-
tinct clusters for each sample type in the embedding space.
In contrast, FED-PRIME produces more scattered embed-
dings, where the embeddings of complete samples are po-
sitioned closer to those of samples with missing modalities.
This demonstrates FED-PRIME’s superior ability to learn
meaningful and comprehensive representations, regardless
of the specific missing type in a sample. A notable ob-
servation is that image-only samples in FEDAVG-P em-
beddings are significantly distant from text-only and com-
plete samples. This separation highlights the limitations of
FEDAVG-P in capturing cross-modal relationships effec-
tively, which can be attributed to the fact that this method
utilizes prompts specific to the missing modality type. This
further supports the hypothesis that the ViLT backbone in
FED-PRIME has a better capability for text representation
and integration.
To further explore these models, Fig. 8 presents embed-
dings under the Miss Image training scenario on the UMPC
Food-101 dataset for the same clients. A similar trend is
observed: FED-PRIME generates embeddings with well-
integrated representation of different sample types, while
FEDAVG-P produces two distinct and distant clusters. As
observed before, when image-only samples are included
in the data, embeddings for text and complete samples in
FEDAVG-P may cluster closer together. However, even
in the absence of image-only samples, embeddings for text
and complete samples remain overly distinct, highlighting a



Table 4. Large-scale FL settings using UPMC Food-101 Dataset. FED-PRIME outperforms FEDMSPLIT-P in all scenarios of different
number of clients.

Metrics Method Participating Rates
10% 20% 30% 40% 50%

Top-1 Test Accuracy FEDMSPLIT-P 14.96 22.33 48.98 59.90 81.82
FED-PRIME 22.33 48.98 74.27 80.25 82.06

GPU (GB) FEDMSPLIT-P 22.82 27.21 31.78 37.55 40.12
FED-PRIME 12.83 10.12 10.17 10.50 10.69

lack of cohesive representation across modalities. This sep-
aration likely hinders FEDAVG-P’s performance, contribut-
ing to its moderate results when classifiers are subsequently
applied to these embeddings.

F. Additional Experiment Results
Inter-pool Convergence. Fig. 9 and Fig. 10 depict the
size of the pool of the inter-client prompt pool for the two
datasets in three defined training scenarios. The results in-
dicate an initial increase in the spread of prompts relative to
their centroid, followed by a subsequent decrease. This ob-
servation suggests that the proposed method optimizes the
learned prompts to effectively capture the diversity of data
across participating clients. Once the model sufficiently
learns the clustering and alignment, it begins to condense
client-specific information, which leads to an increase in the
overall pool size.
Scalability in Large-scale FL. We performed additional
experiments on the Food-101 dataset, simulating a scenario
with 100 clients and varying client participation rates be-
tween 10% and 50%. These results were compared against
the strongest baseline for this dataset, FEDMSPLIT-P. As
shown in Tab. 4, our dual-prompt mechanism demonstrates
strong scalability, with performance improving as the num-
ber of participating clients increases. Moreover, our method
consistently outperforms the baseline in terms of test accu-
racy. In terms of computational efficiency, FED-PRIME
exhibits substantially lower GPU memory consumption,
which remains stable regardless of the number of clients, in
contrast to FEDMSPLIT-P, which experiences increased
memory usage as the number of clients increases. This
property makes FED-PRIME particularly well-suited for
deployment in resource-constrained environments.
Performance under Highly Imbalanced Data. In addi-
tion to modality-missing heterogeneity, we also evaluate
our method under extreme data imbalance. FedProx [26],
a popular baseline specifically designed to address Non-IID
problems, is selected for comparison in this setting. Specif-
ically, we compare our method against a variant that modi-
fies the averaging of classifiers and intra-client prompts us-
ing FedProx, denoted as FEDPROX-P. We conduct addi-
tional evaluations on the Food-101 dataset under extreme

Non-IID settings by simulating a Dirichlet distribution with
ϖ = 0.1. The results from Tab. 5 confirm that our method
consistently outperforms FEDPROX-P, further demonstrat-
ing the effectiveness of aggregating inter-client prompts to
combat extreme data imbalance. Although FEDPROX-P

is designed to address data heterogeneity, our method’s
use of inter-client prompts effectively mitigates this issue,
highlighting the strength of our prompt-alignment algo-
rithms and the selective averaging strategy applied to spe-
cific model components. We also evaluate scenarios in
which clients possess either full modalities or only a sin-
gle modality, with our method surpassing both FEDAVG-P
and its centralized counterpart in accuracy (see Fig. 1 and
Fig. 4).



Table 5. Non-IID FL settings with UPMC Food-101 Dataset. Results indicated by a dash (-) represent scenarios where Test (Miss Both)
is the same as Test (→Train).

Train Method Test
(↓ Train)

Test
(Miss Both)

Test
(Full Modal)

Test
(Text only)

Test
(Image only)

Miss
Text

FEDPROX-P 67.42 64.34 77.29 56.83 68.24
FED-PRIME 71.20 71.15 85.08 63.91 69.56

Miss
Image

FEDPROX-P 82.56 71.26 85.24 83.05 45.31
FED-PRIME 87.38 75.59 89.25 87.05 48.47

Miss
Both

FEDPROX-P 75.75 - 89.36 83.98 69.61
FED-PRIME 79.98 - 91.00 86.70 70.38
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Figure 9. Variations in UMPC Food-101 inter-client prompt pool size across 250 communication rounds under different training scenarios.
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Figure 10. Variations in MM-IMDB inter-client prompt pool size across 250 communication rounds under different training scenarios.


