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This supplementary document provides the following
additional materials and results to assist with the under-
standing of our MH-LVC:
• Implementation details in Section 2;
• Cascading and prediction errors in Section 3;
• Overview of Implicit Buffering Strategies in section 4
• Additional alternative Temporal Prediction Structures in

section 5
• The number of long-term key frames in Section 6;
• Command lines for VTM and HM in Section 7;
• Comparison with the state-of-the-art methods in terms of

MS-SSIM-RGB in Section 8;
• More visualizations in Section 9;

1. Mini-GOP
Table 1 examines the impact of the mini-GOP size on cod-
ing performance. These results justify our choice of mini-
GOP 4.

2. Implementation Details
2.1. The Prediction Structure for Training
We adopt a 5-frame training strategy due to limited com-
pute resources. We remark that our scheme can benefit from
training on large GOPs and long sequences.

Fig. 1 (a) illustrates the temporal prediction structure
during training. To create a quality structure among the de-
coded video frames, the weights wt of {1.2, 0.5, 1.2, 0.9}
are assigned as follows: (1) 1.2 for Frame 2 (P ∗ frame), (2)
0.5 for Frame 3 with the quality level 2, (3) 1.2 for Frame
4 with the quality level 3, and (4) 0.9 for Frame 5 with the
quality level 1. Notably, following a strategy similar to that
of DCVC-DC [1], a specific feature extractor is trained to
accommodate each of these weights. That is, in Fig. 2 (b)
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Table 1. Ablation of different mini-GOP sizes. The anchor is LS
with a mini-GOP size of 4.

mini-GOP Period HEVC-B UVG

mini-GOP 4 0.0 0.0
mini-GOP 8 1.0 0.5
mini-GOP 12 2.5 1.3
mini-GOP 16 2.9 2.1

of the main paper, the feature extractor of the long-term key
frame x̂key changes with the quality level. The P ∗ frame
right after the I-frame is unique in that it typically exhibits
a much higher bitrate (and thus better decoded quality) than
those of the remaining P-frames due to error propagation
aware training [2]. In the setting with an infinite intra pe-
riod, we enable P ∗ frames periodically to mitigate temporal
cascading errors.

To be as consistent with the prediction scenario at infer-
ence time as possible, we always use the most recently de-
coded frame as the short-term reference frame during train-
ing. Likewise, the I-frame, due to its higher quality, is al-
ways used as the long-term key frame. However, at infer-
ence time, the long-term key frame can be an I-frame, a P ∗

frame, or a P-frame with the quality level 3.

2.2. The Prediction Structures for Inference
Fig. 1 (b) illustrates our prediction structure at inference
time and how the decoded frame buffer evolves over time
under an intra period of 32. For forming a 4-frame mini-
GOP, we follow a quality pattern similar to the hierarchical
P prediction in traditional codecs. For the first mini-GOP
where no prior key frames are available, the I-frame and
P ∗ frame are stored in the long-term section to serve as the
long-term reference frames for the subsequent frames.

Fig. 1 (c) illustrates the case with an infinite intra period,
where we enable P ∗ frames periodically to mitigate tempo-



Figure 1. Illustration of the coding structures for (a) training with intra-period 32, (b) inference with intra-period 32, and (c) inference with
an infinite intra-period.

Table 2. Training procedure. MENet, MWNet, MCNet represent the motion estimation network, the motion extrapolation network, and the
motion compensation network, respectively. Rmotion and Rt represent the motion and total bitrates, respectively. EPA is error propagation
aware training.

Phase
Number of

Frames
Training
Modules Loss lr Epoch

ME Training 2 MENet D(xt,warp(xt−1, ft)) 1e-5 5

Motion Coding 3 MWNet & Motion codec Rmotion + λ×D(xt,warp(xt−1, f̂t)) 1e-4 10

MC Training 3 MCNet Rmotion + λ×D(xt, x̂C) 1e-4 3

Inter-Frame Coding
3 Inter codec Rt + λ×D(xt, x̂t) 1e-4 10
5 Inter codec Rt + λ×D(xt, x̂t) 1e-4 2
5 Inter codec & MCNet Rt + λ×D(xt, x̂t) 1e-4 7

Finetune 5 All modules except MENet Rt + λ×D(xt, x̂t) 1e-4 5

Finetune + EPA 5 All modules except MENet Rt + λ×D(xt, x̂t) 1e-5 1
5 All modules except MENet Rt + λ× wt ×D(xt, x̂t) 1e-5 2

Variable Rate Finetune 5 All modules except MENet Rt + λp × wt ×D(xt, x̂t) 1e-5 3

ral cascading errors.

2.3. Training Procedures
Table 2 summarizes our training procedure. It begins with
training the single-rate model, followed by fine-tuning it to
arrive at the variable-rate model. The code will be made
available for reproducibility upon the acceptance of the pa-

per.

3. Cascading and Prediction Errors

Fig. 3 shows that our LS is more effective than TP in miti-
gating temporal cascading errors. The results stress the im-
portance of incorporating both long- and short-term refer-



Figure 2. Alternative prediction structures.

Figure 3. The per-frame PSNR profiles on BasketballDrill and
KristenAndSara: LS versus TP . Their average bitrates are com-
parable.

Figure 4. The per-frame PSNR profiles of the temporal predictor
xc on BasketballDrive and Jockey: LS versus LL. Their average
bitrates are comparable.

ence frames.
Fig. 4 further evaluates the prediction errors of LS and

LL by visualizing the PSNR-RGB of the temporal predictor

xc. These results are evaluated for fast-motion sequences,
where the prediction errors are more noticeable. LL ex-
hibits inferior temporal predictor quality compared to LS.
Notably, the quality of the temporal predictor with LL de-
grades over time within a mini-GOP due to the increasing
prediction distance between the coding frame and its refer-
ence frames. In contrast, the temporal predictor quality of
LS remains relatively stable over time, as it leverages both
long- and short-term reference frames.

4. Overview of Implicit Buffering Strategies.

Figure 5 provides an overview of the implicit buffering
strategies framework. To ensure a fair comparison, we im-
plement the implicit buffering strategy of DCVC-TCM [3]
within the same conditional residual video coding frame-
work as our proposed MH-CRT (see Section 4.3 in the main
paper).

5. Additional Alternative Temporal Prediction
Structures

Table 3. BD-rate comparison of several prediction structures with
LS+ serving as the anchor.

LS LS+ SS TP TP+

HEVC-B 0.0 -3.4 14.6 3.3 -0.8
UVG 0.0 -2.7 10.5 2.4 -0.5

MCL-JCV 0.0 -4.6 10.5 2.4 -3.2

We further investigate several alternative prediction
structures (see Fig. 2) to prove the effectiveness of LS.
As mentioned in the main paper, (i) “Short-Short (SS),
which simulates the effect of the single-hypothesis predic-
tion with our two-hypothesis framework by referencing the
most recently decoded frame twice yet with the same opti-
cal flow map, (ii) “Two Previous (TP ),” which predicts a
current frame from the last two previously decoded frames.
We also include “Two Previous Plus (TP+),” which uses
the most recently decoded frame x̂t−1 as the short-term
reference frame and selects adaptively another short-term
reference frame from x̂t−2, x̂t−3, (iv) “Long-Long (LL),”
which predicts from the last two long-term key frames.The
“Long-Short (LS)” corresponds to our MH-LVC-1 predic-
tion scheme, which has one short-term reference frame and
one long-term key frame. Following the same notation as
TP+, we use LS+ to denote our MH-LVC-2, which has
two long-term key frames for adaptive prediction. Note that
all the prediction structures share the same network weights
trained solely for the LS prediction. Table 3 justifies the
effectiveness of LS+ over SS, TP and TP+.



Figure 5. Overview of the implicit buffering strategies framework.

Table 4. Ablation on the number of key frames for online long-
term key frame selection. The anchor is MH-LVC-1.

Number of Encoding BD-rate (%) PSNR-RGB

Key Frames KMACs/pixel HEVC-B UVG

1 1507 0.0 0.0
2 2611 -3.4 -2.7
3 3716 -3.8 -3.0

6. The Number of Long-term Key Frames

Table 4 presents how the number of long-term key frames
under our LS prediction structure may impact the complex-
ity and compression performance. It is seen that the coding
gain diminishes when the number of long-term key frames
goes beyond 2, while the encoding kMAC/pixel increases
considerably.

7. Command Lines for VTM and HM

We compare MH-LVC with traditional video codecs, in-
cluding VTM-17.0 and HM-16.25. Following [1], we
have these codecs encode input videos in YUV444 for-
mat (by converting them from YUV420 into YUV444).
The reconstructed YUV444 videos are then transformed
into RGB domain for evaluating the distortions. For
HM and VTM, encoder lowdelay main rext.cfg and en-
coder lowdelay vtm.cfg config files are used, respectively.

The command lines used are as follows:

• -c {config file name}
--InputFile={input video name}
--InputBitDepth={input bit depth}
--OutputBitDepth={output bit depth}
--InputChromaFormat=444
--FrameRate={frame rate}
--DecodingRefreshType={refresh type}
--FramesToBeEncoded=96
--SourceWidth={width}
--SourceHeight={height}
--IntraPeriod={intra period}
--QP={qp}
--BitstreamFile={bitstream file name}

where we set DecodingRefreshType and IntraPeriod to 2
and 32, respectively, for an intra period of 32. They are
set to 0 and -1, respectively, for an infinite intra period.

8. Comparison with the State-of-the-art Meth-
ods in Terms of MS-SSIM-RGB

Fig. 6 and Fig. 7 show the rate-distortion curves of our MH-
LVC under an intra-period of 32 and infinity, respectively,
where the quality metric is MS-SSIM-RGB.



Figure 6. Rate-distortion performance comparison with intra-period 32 in terms of MS-SSIM-RGB. The numbers within the parentheses
are BD-rates, with HM-16.25 (Low-delay B) serving as the anchor.

9. More Visualizations
Fig. 10 presents more visualizations for the gating signal
generated by the spatial gate predictor.
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Figure 7. Rate-distortion performance comparison under an infinite intra-period in terms of MS-SSIM-RGB. The numbers within the
parentheses are BD-rates, with HM-16.25 (Low-delay B) serving as the anchor.



Figure 8. Rate-distortion performance comparison with intra-period 32 in terms of PSNR-RGB. The numbers within the parentheses are
BD-rates, with HM-16.25 (Low-delay B) serving as the anchor.

Figure 9. Rate-distortion performance comparison under an infinite intra-period in terms of PSNR-RGB. The numbers within the paren-
theses are BD-rates, with HM-16.25 (Low-delay B) serving as the anchor.



Figure 10. Visualization of the gating signal γ(1) for two temporal prediction structures. (a) adopts both long- and short-term reference
frames, (b) has two predictors derived from the same short-term reference frame with the same optical flow map. The bottom row displays
the prediction residues between the coding frame xt and its two motion-compensated reference frames x̂key (denoted as key) and x̂t−1

(denoted as pre).
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