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These supplementary materials present additional experi-
ments and results in Appendix A, ablation studies on SAC-
GNC in Appendix B, and details on some derivations re-
lated to GNC in Appendix C. In addition to this document,
we have prepared a presentation illustrating the proposed
tree-search strategy discussed in the main paper.
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A. Additional Experiments and Results
This section provides additional experiments and results.
Appendix A.1 gives pose graph optimization (PGO) results
in three SLAM benchmark datasets. Appendix A.2 shows
3D registration results on one synthetic dataset. Finally, Ap-
pendix A.3 provides further analysis on the annealing factor
and final shape value for vanilla GNC across all 3DMatch
sequences.

A.1. Pose graph optimization problem
We provide additional PGO results on three SLAM bench-
mark datasets: W100 from GTSAM in [6], M3500
from [2], and SPHERE2500 from [3, 4]. W100 and
M3500 are 2D synthetic datasets simulating a simple and
a challenging Manhattan world environment, respectively.
SPHERE2500 is a 3D synthetic dataset.

In the main paper, we formulate the PGO problem for
2D data. Next, we show its similar formulation for 3D,

which is used in some of the experiments in these supple-
mentary materials. Given N global pose transformations
vi ∈ SE(3), i = 1, · · · , N from relative measurements
ẽi,j ∈ SE(3), we can obtain residuals r(ẽi,j , vi, vj) for the
PGO problem following

r(ẽi,j , vi, vj) = ∥log
(
ẽ−1
i,j v−1

i vj
)∨ ∥Σ, (A.1)

where log (·)∨ brings an element of SE(3) to its tangent
space, and Σ ∈ R6×6 is a covariance matrix.

Results for the three sequences are provided in Fig. .1.
SAC-GNC is the fastest approach, having similar or bet-
ter accuracy than SAC-GNC++ and GTSAM-GNC. SAC-
GNC++ also has an accuracy similar to or better than
GTSAM-GNC. However, while SAC-GNC++ is faster than
GTSAM-GNC in W100, it becomes slower in M3500 and
SPHERE2500 due to the larger size of the graph. The mAA
results for these three sequences and the two sequences
shown in the main paper are detailed in Tab. A.1. This table
clearly shows the difference in accuracy obtained starting
from around 50% outliers.

A.2. 3D registration problem
This subsection provides additional 3D registration results
on synthetic data from previous GNC works, namely, the
Stanford 3D scanning repository [5].
Dataset: Following GNCp’s [9] data generation proto-
col, we generate two sets of points: 1) Type-1, a simple
dataset with 100 points and a noise level of 0.01, and 2)
Type-2, a more difficult dataset with 10, 000 points and
noise level of 0.1. This setup was previously suggested
by TEASER++ [12]. Results comparing our approach with
baseline methods are shown in Tab. A.2.
Results: We observe that on the easier Type-1 data, SAC-
GNC++ and SAC-GNC are the best and second best in ro-
tation, while RANSAC and TEASER++ are the best and
second best in translation, respectively. However, while the
accuracy of SAC-GNC and SAC-GNC++ for translation is
very close to RANSAC and TEASER++, SAC-GNC and
SAC-GNC++ are better by a much larger margin in rotation.
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(a) W100 (2D, synthetic data)

(b) M3500 (2D, synthetic data)

(c) SPHERE2500 (3D, synthetic data)

Figure .1. Pose graph optimization results on three SLAM bench-
mark datasets: (a) W100, (b) M3500, and (c) SPHERE2500. For
each sequence, the left image displays the “Initial trajectory”, the
trajectory estimated by SAC-GNC with 50% outlier loops, and
the “Reference” trajectory. The right image shows the trajectory
mAA at 20 cm for W100 and 5 m for M3500 and SPHERE2500,
represented by the dashed line, and the trajectory mAA at 50 cm
for W100 and 10 m for M3500 and SPHERE2500, represented by
the solid line, over the average computational time (higher mAA
is better). The percentage of randomly perturbed loops varies be-
tween 10% (leftmost dot) and 90% (rightmost dot).

Also, SAC-GNC is the fastest by a large margin. On the
more challenging dataset Type-2, SAC-GNC++ and SAC-
GNC are the best and second best in rotation and trans-
lation, respectively, by a large margin when compared to
RANSAC and FGR. GNCp gets fairly close to SAC-GNC
and SAC-GNC++, but it is significantly slower than SAC-
GNC, which remains the fastest method by a large margin.

10% 20% 30% 40% 50% 60% 70% 80% 90%

GTSAM-GNC [11] 0.963 0.961 0.956 0.942 0.942 0.877 0.792 0.467 0.063
SAC-GNC 0.954 0.954 0.958 0.948 0.943 0.918 0.899 0.823 0.628

SAC-GNC++ 0.955 0.955 0.958 0.946 0.935 0.925 0.896 0.818 0.643

GTSAM-GNC [11] 0.961 0.936 0.932 0.909 0.899 0.838 0.769 0.676 0.302
SAC-GNC 0.964 0.946 0.930 0.910 0.896 0.866 0.802 0.714 0.510

SAC-GNC++ 0.965 0.946 0.930 0.911 0.895 0.866 0.800 0.688 0.514

GTSAM-GNC [11] 0.866 0.868 0.856 0.855 0.817 0.776 0.730 0.610 0.419
SAC-GNC 0.900 0.889 0.870 0.854 0.833 0.808 0.772 0.721 0.556

SAC-GNC++ 0.903 0.891 0.870 0.852 0.831 0.805 0.776 0.715 0.546

GTSAM-GNC [11] 0.970 0.937 0.916 0.866 0.830 0.708 0.501 0.201 0.041
SAC-GNC 0.971 0.942 0.923 0.903 0.892 0.828 0.710 0.542 0.242

SAC-GNC++ 0.972 0.938 0.929 0.909 0.902 0.844 0.703 0.547 0.226

GTSAM-GNC [11] 0.951 0.919 0.897 0.870 0.829 0.807 0.700 0.542 0.141
SAC-GNC 0.950 0.915 0.892 0.869 0.823 0.809 0.714 0.598 0.270

SAC-GNC++ 0.950 0.915 0.892 0.866 0.823 0.812 0.726 0.605 0.301

Dataset Method
Loop Outliers Rate

Trajectory mAA(et, 1m)

INTEL

Trajectory mAA(et, 1m)

CSAIL

Trajectory mAA(et, 50cm)

W100

Trajectory mAA(et, 10m)

M3500

Trajectory mAA(et, 10m)

SPHERE2500

Table A.1. Additional pose graph optimization quantitative results
showing trajectory mAA on multiple datasets. We highlight the
best results.

(eR, 5
◦) (eR, 10

◦) (et, 0.3m) (et, 0.6m)

RANSAC [7] 0.488 0.696 0.887 0.921 1.48
FGR [14] 0.628 0.726 0.820 0.843 1.48

TEASER++ [12] 0.621 0.753 0.865 0.886 1.19
GNCp [9] 0.684 0.751 0.821 0.841 3.66
SAC-GNC 0.723 0.784 0.845 0.853 0.93

SAC-GNC++ 0.736 0.800 0.863 0.870 5.68

RANSAC [7] 0.011 0.064 0.375 0.579 168
FGR [14] 0.619 0.726 0.796 0.828 142

TEASER++ [12]
GNCp [9] 0.640 0.736 0.808 0.833 157
SAC-GNC 0.661 0.752 0.836 0.848 102

SAC-GNC++ 0.666 0.756 0.839 0.851 447

Dataset Method
mAA ↑

Time [ms] ↓

Type-1
inliers

≈ 48.8%

Type-2
inliers
≈ 9.8%

Runtime fail (> 30 minutes per instance)

Table A.2. 3D registration results on the Stanford 3D scanning
repository dataset. We highlight the best and second-best results.

A.3. Assess the robustness of the fixed annealing
factor and final shape in vanilla GNC

To motivate the need for an adaptive annealing factor and
stopping criteria that do not fully rely on a pre-defined pa-
rameter, we investigate what would be the best fixed anneal-
ing factor γGNC and final shape σend on all 3DMatch [13]
dataset sequences. We start by running the vanilla GNC
algorithm using arbitrary values for γGNC and σend = 0.1
to evaluate in how many sequences each value produced
the best solution. We define the best solution as having
the lowest rotation and translation error. Results are shown
in Fig. A.2a. We observe that none of the tested values stand
out from the rest. The annealing factors of 1.4 and 9.9 are
the best performing but only get at most around 25% of the
best hypothesis. Additionally, while 1.4 is the best anneal-
ing for HOME1, it is not the best for, e.g., HOTEL2. As
expected, this study indicates that there is no single general
value for γGNC that can be predefined and give the most ac-
curate and efficient results. We note that although 9.9 gets



(a) Study of the ideal value of γGNC

(b) Study of the ideal value of σend

Figure A.2. Study of the ideal values of (a) the annealing factor
γGNC and (b) the final shape parameter σend for the vanilla GNC
algorithm. We compare the percentage of best solutions acquired
by each tested value for each parameter studied across different
sequences of the 3DMatch dataset.

around the same amount of best solutions (≈ 25%), the 9.9
mAA value is much worse overall in accuracy (rotation and
translation mAA) than 1.4. This happens because the for-
mer is less robust. For γGNC = 9.9, the solutions that do not
achieve the best accuracy (≈ 75% of the estimated pairs),
are much worse in accuracy (rotation and translation errors)
than the ones for the 1.4 case. On the other hand, for the
cases in which γGNC = 1.4 losses for 9.9, it gets fairly close
in terms of accuracy. That is why γGNC = 1.4 is the typi-
cally used annealing factor in the literature.

In addition, we run a similar experiment for the prede-
fined final shape value σend for vanilla GNC. For that, we
run the vanilla GNC algorithm using arbitrary values for
σend and γGNC = 1.4. Results are shown in Fig. A.2b. We
observe that each final shape value of 0.01, 0.05, or 0.1 pro-
duces around 20 to 30% of the best solutions. Again, there
is no single tested value of σend that stands out from the rest
as an ideal candidate.

B. Ablation Studies

This section provides ablation studies for each new tech-
nique proposed: online search for σ (Appendix B.1), stop-
ping criteria (Appendix B.2), and σ initialization (Ap-
pendix B.3). The combination of these techniques con-
stitutes the proposed SAC-GNC algorithm. Additionally,
in Appendix B.4, we provide an ablation study testing
cost functions other than the Geman-McClure. Finally,
in Appendix B.5, we analyze the efficiency of the algo-
rithm. All experiments use the HOME1 sequence from

3DMatch [13] in the more challenging scenario with low
inlier rate matches.

B.1. Online search for σ

The search for the best shape parameter at each GNC itera-
tion is the core of our proposed approach, and it consists of
several techniques, such as the annealing selection process,
model scoring, and tree search.

As written in the main paper, our experiments use σmin =
10−3, γGNC = 1.4, α− = 1, α+ = 3.5, our σ initializa-
tion, random annealing selection, MSAC [10] scoring, the
Geman-McClure loss, and:

SAC-GNC : T = 5, Qadd = 1, and Qsize = 1;
SAC-GNC++ : T = 10, Qadd = 2, and Qsize = 10.

In this section, we aim to change one or two of these param-
eters individually and provide the results of their impact on
the accuracy and efficiency of SAC-GNC.
Annealing sampling: Our annealing sample approach
runs several trials t = 1, . . . , T at each GNC iteration
k. Each trial chooses a random annealing factor γk,t ∈
[γGNC · α−, γGNC · α+], where α± represents a relaxation
of the original annealing parameter γGNC. In this paragraph,
we test an alternative to random sampling. We create a lin-
early spaced vector of size T built with the same value con-
straints and sample from it (each iteration gets the annealing
factor from a different vector position). Figure B.3a shows
results comparing the accuracy of both approaches. The
time difference is marginal and, therefore, not shown. We
observe that results using both approaches are much alike.
We opt to use the random approach as the annealing se-
lection method for our algorithm since accuracy is similar
and random annealing is more flexible. This is desirable
because small variations of σ can lead to different results
caught by the search-tree approach.
Model scoring: The model scoring function is crucial
to our algorithm since inaccurate scores can misguide
our search approach. We experiment with RANSAC [7],
MSAC [10], and LMeds [8]. Figure B.3b shows results
comparing the accuracy obtained using each method. Exe-
cution time is similar between RANSAC and MSAC, while
LMeds takes slightly more time due to its sorting operation.
We observe that MSAC leads to the best accuracy results,
with RANSAC being a close second. LMeds’ accuracy was
expected to be lower since the median value can be harmful
when the outlier rate exceeds 50%. However, we highlight
that LMeds does not use any preset inlier threshold, which
can be useful in some setups. On the other hand, we note
that in most scenarios, we do have some preset idea about
these inlier thresholds in practice, and their use is, therefore,
justified. We choose MSAC as our model scoring function.
Annealing bounds: As described previously, the annealing
selection process chooses an annealing factor γk,t within



(a) Varying annealing selection methods

(b) Varying model scoring functions

Figure B.3. Ablation studies of (a) annealing selection approaches
and (b) model scoring functions.

an interval [γGNC · α−, γGNC · α+]. The defined interval
should ensure 1) we always decrease the shape value (i.e.,
γk,t > 1) and 2) we do not decrease the shape value too
abruptly (to avoid too many jumps outside the convergence
basin). We set α− = 1 and α+ = 3.5. In this section, we
test the robustness of the sampler to different α± parame-
ters. Note that this is a relaxation to the typical annealing
factor used in GNC-based approaches, i.e., γGNC = 1.4.

We start by inspecting the upper relaxation parameter
α+. To that end, we run an experiment varying its value
with SAC-GNC and SAC-GNC++ while fixing α− = 1.
In this context, α+ = 1 will correspond to vanilla GNC
with a fixed annealing factor γGNC = 1.4. The results are
shown in Fig. B.4a. We observe that, as expected, increas-
ing α+ decreases computational time and, eventually, ac-
curacy. The value of α+ leading to the best performance
is 3.5.

Next, we focus on α−. We perform a similar experi-
ment using SAC-GNC and SAC-GNC++. This time, we fix
α+ = 3.5 and vary α−. Assuming γGNC = 1.4 (as done in
the literature), we only vary α− from 0.75 to 1 to ensure 1 <
γGNC · α− < γGNC. The results are shown in Fig. B.4b. We
observe that lowering α− only leads to a slightly better ac-
curacy (maximum improvement of approximately 0.003 in
mAA(eR, 5

◦) and 0.002 in mAA(et, 30cm)), and slightly
worse efficiency (an increase of approximately 0.3ms in
SAC-GNC and 0.8ms in SAC-GNC++). These small dif-
ferences indicate that changing the lower relaxation does
not provide significant changes, unlike varying α+. The
best trade-off between accuracy and efficiency is obtained
for α− = 1.

We note that the parameters α± are fixed for all the ex-
perimental results in the paper, across two different prob-
lems (3D registration and PGO) and various datasets. Our

(a) Varying upper relaxation α+ (recall the upper sampling bound is given
by γGNC · α+). Results using γGNC = 1.4 and α− = 1.

(b) Varying lower relaxation α− (recall the lower sampling bound is given
by γGNC · α−). Results using γGNC = 1.4 and α+ = 3.5.

(c) Varying number of trials T .

(d) Varying queue size Qsize and maximum added hypotheses Qadd.

Figure B.4. Ablation studies of (a) the upper annealing relaxation
α+, (b) the lower annealing relaxation α−,(c) the number of tri-
als T , and (d) the maximum size of the priority queue (Qsize) in
combination with the maximum number of hypotheses added to
the queue (Qadd) at each iteration.

consistent improvements in all experiments demonstrate
that the choice of α± is robust to different unseen 3D regis-
tration and PGO data.

Number of trials: The number of trials T allows our algo-
rithm to try various annealing factors at each GNC iteration.
To test how T affects the performance of our algorithm, we
vary its value from 2 to 15 using both SAC-GNC and SAC-
GNC++. Results are shown in Fig. B.4c. As expected, in-
creasing T improves accuracy and reduces efficiency be-
cause we are evaluating more annealing factors. For SAC-
GNC specifically, we note a large jump in accuracy between
2 to 5 trials and a steady, smaller growth in accuracy as T
increases beyond 5. For our general settings, we choose
T = 5 and T = 10 for SAC-GNC and SAC-GNC++, re-



spectively. The aim is for SAC-GNC to strive for efficiency,
while SAC-GNC++ seeks better accuracy (with a moderate
efficiency loss). Note that increasing T only leads to more
accurate results (by sampling more annealing factors and σ
more densely), at the cost of efficiency.

Queue size and tree search rules: Our search strategy uses
a priority queue to decide which shape parameter to test
next. In each iteration, at most Qadd promising hypotheses
are added to the queue. This parameter helps regulate the ef-
ficiency of the estimation. If we add all generated hypothe-
ses, our algorithm could be computationally slow. To fur-
ther improve efficiency, we define a maximum size for the
priority queue Qsize. We run experiments using SAC-GNC
and varying Qsize between 1 and 17, and Qadd between 1
and 7. Results are shown in Fig. B.4d. Please note that in-
creasing these queue-related parameters can only improve
accuracy, but it could come at the expense of efficiency.

We observe that, as expected, using Qadd = 1 gets sim-
ilar results for all tested queue sizes. This is because only
one hypothesis is added in each iteration, which is immedi-
ately used in the next. For Qadd > 1, we observe that the
most critical parameter is Qsize since accuracy improves
as Qsize increases and Qadd = [3, 5, 7] produced rela-
tively similar results. Concerning execution time, setting
Qadd = [3, 5, 7] also produced similar results. Recall that
increasing Qadd does not mean adding Qadd new hypothe-
ses each iteration. Qadd is an upper bound on the number
of new hypotheses that can be added to the queue. This
means that even though we can add more hypotheses, accu-
racy or time won’t necessarily go up because of it. How-
ever, we note that having Qadd > 1 produces more accurate
results, indicating that exploring other hypotheses is bene-
ficial at the cost of being less efficient. For our approach,
we defined the two versions (SAC-GNC and SAC-GNC++)
with these results taken into account. With efficiency as the
primary goal, we define SAC-GNC using Qadd = 1 and
Qsize = 1. Striving for accuracy, we define SAC-GNC++
with Qadd = 2 and Qsize = 5.

Priority queue: Finally, we present an ablation study com-
paring two strategies for sorting the priority queue. The
first strategy, I, prioritizes tree level first and model score
second. The second strategy, II, considers only the model
scores. Results are shown in Tab. B.3. We observe that I
yields higher accuracy – especially for SAC-GNC++ – as
it encourages greater exploration. In contrast, II results in
lower accuracy and shorter runtime, as it tends to explore
models predominantly from higher tree levels. This nar-
rows the search and overlooks promising models at lower
levels, particularly because scoring becomes unreliable at
higher σ values (i.e., it struggles to correctly distinguish in-
liers from outliers). Strategy I mitigates this issue by pro-
moting a more balanced exploration.

(eR, 5
◦) (et, 0.3m)

I 0.489 0.622 6.73 5.54
II 0.489 0.622 6.73 5.74

I 0.505 0.643 30.4 43.4
II 0.495 0.632 9.00 13.6

Method Priority
Strategy

mAA ↑
Iter. ↓ Time ↓

[ms]

SAC-GNC

SAC-GNC++

Table B.3. Ablation study on the priority queue sorting strategy: I
sorts by tree level first, followed by model score; II sorts solely by
model score.

(eR, 5
◦) (et, 0.3m)

100 0.170 0.359 1.60 1.95
10−1 0.481 0.619 3.00 3.73
10−2 0.489 0.622 5.24 5.17
10−3 0.490 0.622 7.83 6.69

Completed Search
& Convergence 10−3 0.490 0.623 6.72 5.98

100 0.231 0.427 3.81 7.72
10−1 0.501 0.638 11.2 26.0
10−2 0.506 0.645 23.8 38.4
10−3 0.507 0.645 39.8 55.7

Completed Search
& Convergence 10−3 0.505 0.644 30.9 46.4

Method Stopping Criterion σmin
mAA ↑

Iter. ↓ Time ↓
[ms]

SAC-GNC

Completed
Search

SAC-GNC++

Completed
Search

Table B.4. Ablation study on the proposed stopping criteria. Our
stopping criteria let us use a σmin ≪ σend, which allows SAC-
GNC to primarily converge to a solution rather than stopping at a
certain σend. This improves efficiency while maintaining accuracy
and enables SAC-GNC to suit diverse data.

B.2. Stopping criteria
We propose two new stopping criteria: 1) there are no more
promising nodes worth exploring, i.e., the queue is empty
(“completed search”), and 2) the model or model scoring
of the best hypothesis H∗ converges (“convergence”). Re-
call that the vanilla GNC stops when a predefined σend is
reached.

Table B.4 provides results for various stopping criteria
settings using SAC-GNC and SAC-GNC++. We observe
that, when using only the “completed search” criterion, set-
ting σmin to 100 leads to the worst results, while 10−1, 10−2,
and 10−3 all lead to similar results in accuracy, with effi-
ciency lowering as σmin decreases. Although for efficiency
purposes, one might want to use 10−1 for this specific se-
quence, it is not obvious that it will generalize to other data.
To be as general as possible, one should aim to decrease
σmin as much as possible1. However, we observe that set-
ting σmin to 10−3 can lead to lower efficiency. When adding
the “convergence” criterion to the “completed search”, we
can set σmin to a low value (e.g., 10−3). This allows the
algorithm to converge to a solution rather than stopping at
a certain σmin, resulting in efficiency improvements for a
similar accuracy. This also allows SAC-GNC to generalize

1Note that setting σmin to a too low value can lead to null gradients
when solving the optimization problem.



(eR, 5
◦) (et, 0.3m)

Predefined σ0 103 0.465 0.612 28 7.45
From [11] N/A 0.458 0.609 16.3 6.08

Ours N/A 0.457 0.605 13.8 5.82

Predefined σstart 103 0.487 0.618 10.9 6.80
From [11] N/A 0.490 0.623 8.08 6.33

Ours N/A 0.490 0.623 6.72 5.98

Predefined σstart 103 0.506 0.645 36.4 48.3
From [11] N/A 0.506 0.644 33.2 48.0

Ours N/A 0.505 0.644 30.9 46.4

Method Shape
Initialization σ0

mAA ↑
Iter. ↓ Time ↓

[ms]

Vanilla
GNC

γ = 1.4

SAC-GNC

SAC-GNC++

Table B.5. Ablation study on the shape parameter initialization.
The proposed initialization method can be used by any GNC-based
approach as it depends solely on the robust cost function. N/A
stands for not applicable.

(eR, 5
◦) (et, 0.3m)

SAC-GNC++

Geman-McClure 0.506 0.645 36.4 48.3
Cauchy 0.436 0.543 34.5 53.5

Bisquare 0.359 0.533 8.76 12.7
Logistic 0.158 0.269 21.4 25.9

Method Cost Function
ρσ(·)

mAA ↑
Iter. ↓ Time ↓

[ms]

Table B.6. Ablation study on robust cost functions. SAC-GNC
applies to any robust loss ρσ(·).

to different data, not relying so heavily on hyperparameters
like vanilla GNC.

B.3. Shape parameter initialization
A crucial step to avoid running unnecessary iterations is to
choose a suitable σ0 corresponding to a least squares solu-
tion for some data. Next, we test our initialization scheme
against the approach of [11] and a high predefined initial σ0

using the vanilla GNC (with σend = 0.1 and γ = 1.4), SAC-
GNC, and SAC-GNC++. Results are shown in Tab. B.5.
With vanilla GNC, we observe that our initialization leads to
the lowest accuracy despite being faster. This suggests that
our initialization may be too greedy, i.e., it does not resem-
ble exactly a least squares solution2. However, when com-
bined with SAC-GNC or SAC-GNC++, our initialization
produces similarly accurate results compared to the other
initialization methods with better efficiency. This implies
that, although the proposed initialization may be greedy,
the search scheme of SAC-GNC can recover from it and
achieve accurate and efficient solutions. The vanilla GNC
is not as robust to a greedy initialization as the proposed
adaptive annealing strategy.

B.4. Robust cost function
Finally, we extend the ablation study on robust cost func-
tions provided in the main paper. Table B.6 presents
results comparing the performance of SAC-GNC++ us-
ing the Geman-McClure, Cauchy, Bisquare, and Logistic
losses. Similar to the results obtained in the main paper, the

2Recall that, for efficiency, we define the weight of the data point with
maximum residual to 0.95 and not 1 as expected in a least squares problem.

Figure B.5. Ablation study on the effect of data size M and Qsize

on the efficiency of SAC-GNC.

Geman-McClure loss is the best-performing loss in terms
of accuracy, followed by the Cauchy, Bisquare, and Logis-
tic losses, respectively. In efficiency, it is the third-best per-
forming. This follows the results obtained for SAC-GNC,
although the efficiency drop is higher for SAC-GNC++ due
to the extensive search this version of our approach con-
ducts.

B.5. Efficiency analysis
Finally, we evaluate the efficiency of SAC-GNC as a func-
tion of increasing data size M and priority queue size Qsize.
In this ablation study, we synthetically generate data for
the 3D registration problem with 40% inliers. Results for
varying values of M and Qsize are shown in Fig. B.5. We
observe that increasing the data size leads to reduced esti-
mation efficiency. This outcome is expected, as the main
computational bottleneck of SAC-GNC lies in the model
scoring step, which has a complexity of O(M). Similarly,
increasing Qsize also results in lower efficiency, although the
impact is less pronounced than that of increasing M .
Model computations: In terms of the number of mod-
els computed during estimation, SAC-GNC generates more
models than the baselines, as it estimates T models per it-
eration – one for each sampled annealing factor. Table B.7
compares SAC-GNC with vanilla GNC and GNCp in terms
of accuracy and efficiency. As expected, SAC-GNC and
SAC-GNC++ compute more models overall. However, we
observe that there is no direct correlation between the num-
ber of models computed and the overall efficiency (i.e.,
computational time). E.g., comparing vanilla GNC with
γ = 1.4 to GNCp (which leverages parallelism), we see
that computing fewer models and performing fewer itera-
tions does not always result in improved efficiency, due to
other computational overheads.

C. Black-Rangarajan duality in GNC
To end the supplementary material, we show how to solve
Eq. 2 of the paper efficiently. Although Algorithm 1 of
the main paper seems simple and intuitive, solving Eq. 2
can be very costly, which is a problem since it needs to
be solved several times. To alleviate this issue, GNC al-
gorithms typically follow the Black-Rangarajan duality [1],



Fixed γ Adaptive (eR, 5
◦) (et, 0.3m)

1.4 – 0.641 0.809 28 28 5.82
– GNCp 0.636 0.801 7.80 7.80 4.63
– SAC-GNC 0.654 0.816 6.40 32 3.85
– SAC-GNC++ 0.655 0.819 11.6 116 11.2

1.4 – 0.465 0.612 28 28 7.45
– GNCp 0.449 0.603 20.1 20.1 19.3
– SAC-GNC 0.490 0.623 6.72 33.6 5.98
– SAC-GNC++ 0.505 0.644 30.9 309 46.4

Dataset:
3DMatch

Annealing Update mAA ↑
Iter. ↓ Model

Comp.
Time ↓

[ms]

↑
in

lie
rs

≈
59

.8
%

↓
in

lie
rs

≈
11

.6
%

Table B.7. Efficiency comparison between vanilla GNC, GNCp,
and SAC-GNC. SAC-GNC performs more model computation
steps than the baseline methods. However, computing fewer mod-
els does not necessarily lead to better efficiency – due to other
computational overheads. We highlight the best and second-best
results.

Algorithm C.1: Graduated Non-Convexity
Input – Let D be some data supporting the model to be
estimated (including outliers and noise); σ0 and σend be
initial and final shape parameters; and γGNC be the an-
nealing factor.
Output – Final model θ∗

1 Initialize: k ← 1, W0 ← [1, · · · , 1];
2 θ0 ← estimateModel (D, W0);
3 while σk ≥ σend do
4 σk ← updateShape (σk−1, γGNC);
5 /* SOLVE EQ. 2 OF THE PAPER */
6 ϕ0 ← θk−1;
7 n← 0;
8 while Not converged do
9 n← n+ 1;

10 Rn ← computeResiduals (D, ϕn−1);
11 Wn ← computeWeights (Rk, σk); ▷ Eq. C.3
12 ϕn ← computeModel (D, Wk, ϕn−1); ▷ Eq. C.6
13 θk ← ϕn;
14 /* END */
15 k ← k + 1;
16 θ∗ ← θk;

which changes Eq. 2 into

θ∗,W∗ = argmin
θ,W

N∑
i=1

[
wir

2 (xi, θ) + Φρσ
(wi)

]
, (C.2)

where W def
= {wi}, and wi ∈ (0, 1] for i = 1, · · · , N

are weights associated with ith data sample and Φρσ (wi)
is the outlier process. Notice that Eq. C.2 is optimized
over W and θ, while the original problem only optimizes
over θ. However, one can see that this problem can be
solved more efficiently by using alternating minimization
techniques, i.e., in a loop, first solving for W and then θ.

For the Geman-McClure robust loss function loss func-

tion in Eq. 3 of the paper, one can write (see [1])

wi =

(
1

1 + r 2 (x
i
, θ)/σ 2

)2

, for i = 1, . . . , N, (C.3)

Φρ
σ

(wi)
def
= σ (

√
wi − 1)

2
. (C.4)

Now, to solve Eq. C.2, again, we use an alternative mini-
mization strategy. We start by optimizing over W for a fixed
θ, which can be analytically solved using Eq. C.3. Then, we
optimize Eq. C.2 over θ for fixed W . Since

∂Φρ
σ

(wi)

∂θ
= 0, (C.5)

solving Eq. C.2 for θ is the same as

θ∗ = argmin
θ

N∑
i=1

wir
2 (xi, θ) , (C.6)

which can be solved very efficiently (weighted least
squares). This alternative process is represented by the in-
ner loop in Algorithm C.1. As a convergence criterion, typ-
ical optimization techniques can be used. For example, we
check when the distance between the estimated models θi
and θi−1 is smaller than some threshold or when the cost
function value converges.
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