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Figure 7. Generation process of a functional map using a diffusion
model. For low-frequency elements (green square), the sign of
diagonal elements at the Gaussian noise step never changes during
the denoising process. This explains why spectral regularization
with SDS fails to correct misalignments effectively.

In this supplementary material, we first provide insights
on the sign ambiguity problem of functional maps in Sec. 8.
We provide more experimentation details about datasets
(Sec. 9), baselines (Sec. 10), and implementation (Sec. 11)
for the experiments in Sec. 5 of the paper. Next, we show
the behavior of our method with a plot of the loss during
zero-shot optimization in Sec. 12, a visualization of denois-
ing trajectories in Sec. 13, and finally an analysis of descrip-
tors in Sec. 14. We also show that the matching provided
by our method allows competitive reconstruction of input
shapes by combining it with the ARAP energy in Sec. 15.
Finally, in Sec. 16, we provide a simple experiment provid-
ing insights on sparsity-promoting mask efficiency.

8. Sign Ambiguity of Functional Maps
This phenomenon occurs because functional maps are
nearly discrete at low frequencies. Indeed, it has been ob-
served that the ground truth maps at low frequency follow
a diagonal structure [19], where the values of the diagonal
elements are ±1 (modulo volume changes). This affects the
overall trajectory of generation - where signs of the diago-
nal elements remain unchanged (Fig. 7) - and thus the ca-
pacity of diffusion models to provide efficient spectral reg-
ularization. Thus, to better capture the underlying structure
of the functional maps from data, we chose to adopt a sign-
agnostic approach.

9. Datasets

Near-isometric Shape Matching. The FAUST
remeshed [6, 20] version contains 10 individuals in 10 dif-
ferent poses. SCAPE [2] contains 50 challenging poses of
one individual. SHREC [17] contains 50 humans from dif-

ferent datasets, with 407 annotated pairs using an automatic
human registration algorithm (partial shape matching pairs
are excluded).

Non-isometric Shape Matching. The matching version of
the DT4D dataset [16] contains more than 400 shapes, with
more than 1000 annotated pairs remeshed using the LRVD
algorithm [24], from which we use the intra-category and
inter-category test sets from [14]. The SMAL remeshed
dataset [9], which contains around 400 animal pairs ex-
tracted from real images using the SMAL deformation
model [25]. The animal shape pairs from the TOSCA are
from cat, dog, horse and wolf categories.

10. Baselines

We compare our method against several baselines for
shape matching. 3D-CODED [11] is an autoencoder trained
specifically for shape matching. The shape latent vectors
are computed and refined by optimizing the obtained reg-
istrations. Neural Jacobian Fields [1] is a model that pre-
dicts the Jacobian of deformation instead of vertex positions
and generalizes to unregistered meshes. Smooth shells [10]
is an axiomatic approach that refines functional maps in a
coarse-to-fine approach to obtain plausible final correspon-
dences. Shape-Non-Rigid-Kinematics (SNK) [4] is a state-
of-the-art zero-shot algorithm to train deep feature extrac-
tors on pairs of shapes. We also compare to a state-of-the-
art deep functional maps approach, Simplified Fmaps [15].
All trainable models are trained on the D-FAUST dataset.
Finally, we also show the results of using a feature extractor
with random weights combined with different masks.

11. Experimental Details

Feature Extractor. We follow the zero-shot experimen-
tal settings from SNK [4]. The feature extractor consists
of four DiffusionNet blocks of dimension 256, and we use
128 eigenvectors for the heat diffusion. The input features
of the feature extractor are XYZ features on the oriented
versions of each dataset [22]. We set λ = 0.1 for humans
and λ = 1e− 3 for the other datasets, respectively. For the
Ini+Zoomout scenario with our mask, we set λ = 1.

Diffusion Model Training. We train our spectral diffusion
model for 1000 steps. The training setting is the same as
in [13], with optimal reweighting of the losses and using



Figure 8. Loss and other penalties during optimization of the
matching.

Figure 9. Example generation trajectories using spectral diffu-
sion models on functional maps (top) and absolute functional maps
(bottom)

the variance-preserving SDE, which reproduces the trajec-
tory of DDPM [12]. No normalization of functional maps
is applied, as the values inside the matrices range from -1 to
1 already.

Zero-Shot Training. We train our deep functional map ap-
proach for 1000 gradient steps using Adam optimizer. The
overall training on a single pair takes approximately 180
seconds on a NVIDIA L40S GPU.

Evaluation. For the evaluation, we refined our optimized
maps using Zoomout to obtain a final map dimension of
150x150, as commonly done in the deep functional maps
approach [4, 15].

12. Loss Behavior

We plot the loss behavior during optimization in Figure 8.
The loss is smoothly optimized and converges rapidly.

13. Generating Functional Maps and Absolute
Functional Maps

We show two example denoising trajectories, from the orig-
inal and absolute spectral diffusion models in Figure 9.

Figure 10. After applying DiffuMatch, we select a point on the
source shape and compute the distance of this point to all points on
both target and source shapes, in the descriptor space. We plot the
obtained distances on both shapes. The closest points are points
that are geodesically close to the select point.

14. Quality of Learned Descriptors
Learned descriptors using our approach are meaningful
thanks to our proper loss. Indeed, it has been shown that
when properness is encouraged, the extracted correspon-
dence is approximately the same whether it is extracted
from the functional map or by nearest neighbor search [5].
We visually verify this in Figure 10, where we show the
nearest points to a selected point using nearest neighbor in
the feature space (after projection on the space spanned by
the first 30 eigenfunctions – the only ones used in the map
computation), showing that our method enables meaningful
descriptor learning in addition to the quality of the shape
matching.

15. Comparison of Reconstruction of Deforma-
tion Models

As stated in the paper, deformation models are not suitable
for generalization to new type of categories. In this section,
we provide reconstructions from 3D-CODED and NJF of
the source shape in section 4.2. Moreover, as SNK provides
a shape reconstruction as output, we also show the recon-
struction provided by SNK. Finally, we extract shape cor-
respondence Π from DiffuMatch and reconstruct the vertex
position of the shape in the target mesh topology, by solving
for the closest possible solution minimizing the As-Rigid-
As-Possible (ARAP) [23]. Let X be the vertex of the source
mesh, the reconstruction Yrec in the target mesh topology is
given by:

Yrec = argmin
Y

||Y −ΠX||+ Earap(Y ).

As our matching is nearly perfect, the provided recon-
struction, shown in Figure 11 is visually better than the one
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Figure 11. Reconstruction of source shape using different ap-
proaches. For our reconstruction, we solve for the closest vertex
positions to the matched shape minimizing the ARAP energy from
the target shape.
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Figure 12. Given a ground truth functional map C ∈ Mn(R),
and a scalar, 0 < λ < 1, the matrix λC represents approximately
the same pointwise correspondence as C. By applying Zoomout to
both C and λC, we obtain the same map. The observation does
not always hold when lambda > 1. We plot the geodesic errors
of λC for different values of λ.

given by other approaches, up to some artifacts due to our
matching being computing on the first 30 eigenfunctions
only. The capabilities of our model can also be extended
to reconstruction of input meshes in a new topologies.

16. Importance of Mask Regularization.
Mask regularization plays a key role in most (deep) func-
tional map pipelines [3]. We run a simple experiment to
show that the functional map space is particularly well-
suited for this type of penalty. Multiplying a ground truth
functional map matrix C ∈ Mn(R) by any scalar 0 < λ <
1 raises approximately the same pointwise correspondence
as the original one from C. We also observed the same phe-
nomena after applying Zoomout [18], where the obtained
correspondences are the same. This phenomenon is illus-
trated in Figure 12.

As most masks are sparsity-promoting masks, their mask
penalty minimizers have multiple solutions, which are λ ×
X where X is any solution. As we observed, optimized
maps can be proportional to the ground truth solution and

Method Computation time
3D-Coded 160s
Neural Jacobian Fields 3.26s
SimplifiedFmaps 1.08s
SNK 130s
Ini + Zoomout (our mask) 0.75s
Ours full 150s

Table 3. Computation costs for different methods.

Figure 13. DiffuMatch result on a cactus pair.

Figure 14. Partial matching results on SHREC16

still output a correct pointwise correspondence. Based
on this insight and the efficiency of mask regularization
in functional map computation, we proposed to distill the
knowledge of our trained diffusion model by extracting a
sign-agnostic mask that will promote structures seen in the
training set.

17. Computation Time
A single run of DiffuMatch takes approximately 150 sec-
onds on an NVIDIA L40S GPU. In the case where com-
putation time is a bottleneck, the scenario Ini (feature ex-
tractor with random weights) + Zoomout with our distilled
mask is competitive as it requires little computation time.
We provide a comparison of computation time with some
other competing methods in Tab. 3

18. Generalization
Non articulated shapes We showcase that DiffuMatch can
perform well on a pair of two cactus meshes in Fig. 13.
Partial shape matching We show in Fig 14 some partial
matching results. DiffuMatch can work on pairs where the
partiality is moderate. However, when the partiality be-
comes significant, DiffuMatch is prone to failure, with an



error of 19.8 and 23.4 on SHREC16 cuts and holes partial
shape matching challenges [21]. This is to be expected, as
functional maps have a different structure between full and
partial correspondence [21], and methods applied to partial
shape matching often rely on modified losses [7, 8] or re-
quire feature pre-training [8].

References
[1] Noam Aigerman, Kunal Gupta, Vladimir G. Kim, Siddhartha

Chaudhuri, Jun Saito, and Thibault Groueix. Neural jacobian
fields: learning intrinsic mappings of arbitrary meshes. ACM
Trans. Graph., 41(4), 2022. 1

[2] Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Se-
bastian Thrun, Jim Rodgers, and James Davis. Scape: Shape
completion and animation of people. 2023. 1

[3] Souhaib Attaiki and Maks Ovsjanikov. Ncp: Neural cor-
respondence prior for effective unsupervised shape match-
ing. Advances in Neural Information Processing Systems,
35:28842–28857, 2022. 3

[4] Souhaib Attaiki and Maks Ovsjanikov. Shape non-rigid kine-
matics (snk): A zero-shot method for non-rigid shape match-
ing via unsupervised functional map regularized reconstruc-
tion. Advances in Neural Information Processing Systems,
36:70012–70032, 2023. 1, 2

[5] Souhaib Attaiki and Maks Ovsjanikov. Understanding and
improving features learned in deep functional maps. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 1316–1326, 2023. 2

[6] Federica Bogo, Javier Romero, Matthew Loper, and
Michael J Black. Faust: Dataset and evaluation for 3d
mesh registration. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3794–3801,
2014. 1

[7] Dongliang Cao and Florian Bernard. Unsupervised deep
multi-shape matching. In European Conference on Com-
puter Vision, pages 55–71. Springer, 2022. 4

[8] Dongliang Cao, Paul Roetzer, and Florian Bernard. Unsu-
pervised learning of robust spectral shape matching. ACM
Transactions on Graphics (TOG), 42:1 – 15, 2023. 4

[9] Nicolas Donati, Etienne Corman, Simone Melzi, and Maks
Ovsjanikov. Complex functional maps: A conformal link be-
tween tangent bundles. In Computer Graphics Forum, pages
317–334. Wiley Online Library, 2022. 1

[10] Marvin Eisenberger, Zorah Lahner, and Daniel Cremers.
Smooth shells: Multi-scale shape registration with functional
maps. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 12265–12274,
2020. 1

[11] Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan
Russell, and Mathieu Aubry. 3d-coded : 3d correspondences
by deep deformation. In ECCV, 2018. 1

[12] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. Advances in neural information
processing systems, 33:6840–6851, 2020. 2

[13] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine.
Elucidating the design space of diffusion-based generative

models. Advances in neural information processing systems,
35:26565–26577, 2022. 1

[14] Lei Li, Nicolas Donati, and Maks Ovsjanikov. Learning
multi-resolution functional maps with spectral attention for
robust shape matching. Advances in Neural Information Pro-
cessing Systems, 35:29336–29349, 2022. 1

[15] Robin Magnet and Maks Ovsjanikov. Memory-scalable
and simplified functional map learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4041–4050, 2024. 1, 2

[16] Robin Magnet, Jing Ren, Olga Sorkine-Hornung, and Maks
Ovsjanikov. Smooth non-rigid shape matching via effective
dirichlet energy optimization. In International Conference
on 3D Vision (3DV), 2022. 1

[17] Simone Melzi, Riccardo Marin, Emanuele Rodolà, Umberto
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