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1. More details on the 3D lane representation
In this section, we provide additional information about CR
splines and the curve computation.

1.1. CR splines
We provide details on our selected curve representation,
Catmull-Rom (CR) splines [1]. CR splines are a class of
splines comprised of piece-wise defined smooth third-order
polynomial splines. A special property that we exploit for
our transformer-tailored representation is that the curve in-
herently passes through its control points. In Fig. 1a we
illustrate the basis functions for an example CR spline us-
ing 6 control points. Each value of a CR spline function is
affected by the 4 nearest control points. Thus, a local seg-
ment between two consecutive control points pj and pj+1 of
a 1D spline f(s̃) with curve argument s̃ ∈ [0, 1] is defined
as

f(s̃) =
[
s̃3 s̃2 s̃ 1

]
· M̃CR ·
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and illustrated in Fig. 1b. M̃CR ∈ R4×4 is the coefficient
matrix for this segment defined as
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and s̃ =
[
s̃3 s̃2 s̃ 1

]
the spline argument vector. The

product of s̃ and M̃CR represents the four involved CR basis
polynomials. The multiplication with the control point vec-
tor yields a weighted sum, which defines the shape of the
curve segment.

To extend this formulation from a local segment to a
global curve with an arbitrary number of control points M ,
we have to apply two changes. First, the spline argument
vector needs to be normalized based on the knot positions
sk, which are visualized in Fig. 1a by the dashed vertical
lines, such that we obtain
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(a) CR basis polynomials (b) Local segment

Figure 1. Global and local CR spline basis functions.

for s ∈ [sk, sk+1]. Second, the coefficient matrix needs to
be augmented to MCR ∈ R4×M , where most values remain
zero and only the entries affecting the four involved control
points equal M̃CR. Thus, MCR(s) now varies with the curve
parameter s and is determined by the interval between the
corresponding knots sk and sk+1. Consequently, we obtain

f(s) = s ·MCR(s) · p with (4)

MCR(s) =

{
M̃CR if s ∈ [sk, sk+1]

0 else ,
(5)

with control point vector p ∈ RM . Note, that although
MCR(s) depends on s, which we omitted in the main paper
for simplicity, the matrix s ·MCR(s) can be pre-computed
before training or inference. Thus, in each training iteration
or inference step, the post-processing required to generate
full splines reduces to a single matrix multiplication.

Finally, extending the 1D function to a full curve model
f(s) ∈ R4 with 3 spatial (xj , yj , zi) and 1 visibility (vj)
results in

f(s) =
[
s3 s2 s 1

]
·MCR(s) ·P with (6)

P =
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. . .
xM yM zM vM

 , (7)

with control point matrix P ∈ RM×4 and MCR(s) the full
coefficient matrix.

1.2. Curve computation and parameterization
In practice, the curve is computed by sampling arguments
s in the range [0, 1], pre-computing the matrix s ·MCR(s)
and generating the curve via multiplication with the control
point matrix (as described in Section 1.1).



During training, we need to determine the curve argu-
ment ŝ for a given ground truth sample (x̂, ŷ, ẑ, v̂) in or-
der to compute the loss at the corresponding position in the
predicted curve. Similar to [7], we keep the longitudinal y-
component of the spline control points fixed and distribute
them uniformly along the range [ys, ye]. This simplifies the
determination of curve arguments ŝ to

ŝ = (ŷ − ys)/(ye − ys) . (8)

2. Detection losses
In this section, more details about our utilized losses are
provided.

2.1. Classification loss
We employ focal loss [5] for category classification, formu-
lated as follows

Lcls =−
1

N

N∑
i=1

K+1∑
k=1

(
Ĉik ·

(
1−Cik

)γ · log (Cik

))
,

(9)

with predicted category probability distribution of the ith

line proposal Ci, ground truth one-hot vector Ĉi and fo-
cusing parameter γ ≥ 0. Note, that the probabilities for
predicted categories and the background class sum up to∑K+1
k=1 Cik = 1.

2.2. Regression loss
Inspired by [8], we apply L1 loss along the visible points
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1
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with ground truth points (x̂ij , ŷij , ẑij , v̂ij) of the ith line
proposal and MGT the number of samples in the ground
truth. The corresponding curve argument ŝj is obtained as
described in Section 1.2.

2.3. Visibility loss
For the visibility, we use binary cross-entropy

Lvis =
1

N
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i
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j

v̂ij · log
(
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)
+ (11)

(1− v̂ij) · log
(
1− fv,ij(sj)

)
. (12)

3. Spatio-temporal attention
As discussed in the main paper, the three components of the
spatio-temporal attention mechanism interact with distinct
subsets of queries, which serve as keys and values. This is
implemented through masked attention, where a dedicated
mask is computed for each component − SLA, PNA and
TCA − based on either the structure of the query matrix or
the positions of the associated control points.

3.1. Masking
In SLA, for a given input query Q̃ij , the corresponding set
of keys and values, Q̃SLA, consists of queries from the same
line proposal i. Thus, each query in SLA interacts with the
M queries on the same line.

In PNA, points on neighboring lines in the orthogonal
direction to the curve are selected. To achieve this, we em-
ploy the method described in [8] to identify the two nearest
neighbors on each adjacent line in the orthogonal direction.
Thus, each query in PNA interacts with the 2 · (N − 1)
parallel neighbors.

In TCA, queries in the memory associated with the
MTCA nearest temporally propagated control points are se-
lected. For the distance metric we use euclidean distance.
Thus, each query in TCA interacts with the MTCA near-
est queries in the memory queue. Note, that we used
MTCA = 10 in our experiments.

3.2. Potential for efficiency benefits
We also note that our approach has potential for further ef-
ficiency improvements, which could be explored as future
work: In its core, the proposed spatio-temporal attention
module masks out redundant relations of tokens. The re-
sulting attention matrix has only ∼ 10% of active token
relations and thus ∼ 90% sparsity. While our implemen-
tation is currently based on a simplistic standard attention-
layer that uses masking without leveraging sparsity, opti-
mized approaches like FlashAttention [3, 4] could be used
in future in combination with deployment on more modern
GPUs. Such an implementation could exploit the large ex-
tent of sparsity in the attention-layers and potentially lead
to severe savings in runtime and memory.

4. Dataset statistics
Fig. 2 shows several statistics of our dataset with respect to
the driving scenario and environment. The sequences were
recorded in various regions and countries across the globe
with the distribution given in Fig. 2a. We made sure to col-
lect the data under various weather conditions and daytimes
(Fig. 2b). Moreover, the sequences were chosen such that
the proportions of highway, urban and rural situations are
approximately equal and made sure that even corner case
situations like construction zones are included (Fig. 2c). Fi-
nally, Fig. 2d demonstrates that the dataset also covers lanes
from high curvature roads to enable the trained model to
learn from challenging driving scenarios.

In Fig. 3 lane marking specific statistics are illustrated.
From Fig. 3a is is obvious that the number of occurring lane
markings per frame varies across our dataset. The highest
count of frames is shown for a number of 5 markings per
frame and the maximum number of occurring lines is 11.
In Fig. 3b we show the distribution of line categories. Be-



(a) Regions and countries

(b) Weather and daytime

(c) Environments

(d) Lane curvature (according to accumulated degree)

Figure 2. Scenario-based dataset statistics.

sides the frequently occurring dashed and solid markings,
the labels also contain a large number of road edges and
even curbstones. “Other” contains special kinds of line-like
objects like botts’ dots and road furniture.

5. Auto-labeling details

In the main paper we already gave an overview of the
components and functionality of our auto-labeling pipeline.
More details regarding the most important components are
provided in the following.

2D lane detector. A profound 2D lane detector based on
LaneATT [9] is utilized to generate 2D pseudo labels, which
are elevated to 3D space in a later stage. Certain modi-
fications were applied to the model, which lead to slight
improvements and more robust detection behavior partic-
ularly in the near-range detection. The network was fur-
ther trained using an additional set of 2D labeled images
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Figure 3. Lane marking specific dataset statistics.

obtained from recordings captured with the same vehicles
and cameras. Subsequently, the model is deployed to per-
form the 2D pseudo-labeling task on the unlabeled set of
sequences in our dataset. For a more detailed assessment
of the performance of the 2D lane detector, we refer to the
qualitative and quantitative results of the experiment section
from [9].

3D surface model. We use a simple yet sufficient road
surface model based on the precise ego-trajectory of the ve-
hicle. The assumption of the road model is that the orien-
tation of the vehicle, which is given in the ego-trajectory,
spans a local plane-based surface segment around each of
its locations. Each plane segment is defined between the
current and next position in the ego-trajectory, resulting in
a first degree spline surface in 3D space. Since the ego-
trajectory, which defines this surface model, was precisely
optimized using visual odometry approaches, it provides an
accurate estimation of the real road surface in the vicinity
of the vehicle. Since we propose to project only the first
segments of 2D pseudo-labels to this surface, the resulting
points in 3D space will usually not have a large distance to
the vehicle. The 3D position of the projected lane points
can therefore be considered sufficiently reliable.

Projection to 3D. Since the surface model consists
merely of stacked planes, the intersection of a visual ray
(originating in the camera center traveling through a 2D
lane point) and the road surface can be analytically com-
puted. Thus, the projection of 2D lane points onto the road
surface is a simple and low-cost operation.

Accumulation and Tracking. Connecting line points in



3D to obtain global line instances requires tracking. For the
tracker a solution based on the prominent Kalman Filter is
utilized with certain modifications to get a tailored solution
for the line tracking task (instead of standard object track-
ing). Applying the line tracker to the 3D line points, we
receive full line instances with consistent track IDs.

3D ground truth per frame. After accumulation and
tracking, the resulting global line instances, which are de-
fined for an entire sequence, are simply transformed to the
local vehicle coordinate systems for each frame in the se-
quence utilizing the ego-pose information for the respective
frame. As a result we obtain 3D lines for each frame in its
local 3D coordinate system.

6. Additional results

We provide additional qualitative comparisons of our model
SparseLaneSTP and LATR [6].

6.1. Qualitative results on OpenLane

Fig. 4 shows additional qualitative results from our model
compared to LATR. These examples emphasize the advan-
tages of our proposed contributions discussed in the main
paper while also exploring new scenarios in greater detail.

Fig. 4a demonstrates the advantage of our continuous
representation in precise start-point estimation. Addition-
ally, Fig. 4b highlights another key benefit. The network in-
herently produces smooth curves, whereas the discrete lane
model struggles to accurately represent the sharp continu-
ous curve on the right.

Fig. 4c illustrates a case where our model accurately de-
tects the two splitting lines, whereas LATR fails. This sug-
gests that our novel STA component effectively focuses on
neighboring points of both lines, whereas LATR relies on
global attention, incorporating a majority of redundant re-
lations. Additionally, the applied spatial regularization en-
forces smoothness, penalizing predictions similar to those
produced by LATR.

Fig. 4d and Fig. 4e illustrate the advantages of tempo-
ral modeling over the non-temporal LATR approach. In
Fig. 4d, the crossing vehicle further obstructs the already
faint lane markings. Nonetheless, our model maintains con-
sistent detections. A similar behavior is observed in Fig. 4e,
where partial occlusion does not impact detection perfor-
mance.

An interesting case is shown in Fig. 4f, depicting a sce-
nario with severely limited visibility due to extreme weather
conditions. With most of the image blurred, LATR fails and
produces random predictions. In contrast, our model lever-
ages queries stored in memory, enabling stable and suffi-
cient detection.

6.2. Qualitative results on our 3D lane dataset
We also compare our method to the baseline on our 3D lane
dataset. Note that the top-view and height plots in Fig. 5
depict twice the range of those in Fig. 4 while being scaled
to the same width for consistency.

Fig. 5a demonstrates that our model accurately de-
tects occlusions and even captures small visible segments,
whereas the baseline using the discrete representation fails
to represent such fine details.

As shown in Fig. 5c, our method consistently captures
the long-range curve within the visible area, whereas the
baseline exhibits inaccurate regression and visibility esti-
mation due to simple extrapolation. Similarly, in Fig. 5d
and Fig. 5e, our model maintains consistent detection
throughout the sequence - despite reflections caused by poor
lighting conditions. Notably, Fig. 5e presents a highly chal-
lenging scenario, where our model still achieves reasonably
accurate results.

An interesting case is presented in Fig. 5d. At first
glance, the baseline appears to yield better results, how-
ever, the top-view and height profile reveal inaccuracies in
the 3D geometry due to the absence of priors. In contrast,
our method, which incorporates spatial priors, demonstrates
a more accurate understanding of lane structure, likely at-
tributed to the STA mechanism.

6.3. Scenario-based quantitative comparison on our
3D lane dataset

Given the variety of our dataset with respect to driving en-
vironment, daytime, weather and curvature as illustrated in
Fig. 2, we split the test set into eleven different scenario
subsets and include a quantitative comparison of our model
to the other methods for each subset in Table 1.

From the comparison it is clear that our model outper-
forms the other methods for each scenario. Notably, the
margin is even larger for curves and strong curves than for
straights, highlighting the capability of SparseLaneSTP to
accurately detect lanes in scenarios that show challenging
road geometries.

Besides, the benefit of spatio-temporal priors becomes
evident in scenarios of poor visibility (rain, fog). Here
the model apparently leverages prior knowledge about road
structure and / or previous predictions and queries instead
of suffering under poor signal due to the bad view of single
frames, leading to a more robust detection behavior. Note
that situations in the snow test subset, where the gap of F1-
Score is less significant, do not necessarily imply poor visi-
bility since “Snow” does not correspond to precipitation but
only to snowy environments.
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Figure 5. Qualitative comparison of LATR and SparseLaneSTP on our dataset with ground truth for reference.
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