Supplementary Materials
NeuralSVG: An Implicit Representation for Text-to-Vector Generation

1. Additional Details

Training Scheme In the pretraining stage, we train the
network for up to 300 steps using a constant learning rate of
0.01. For the full training process, we train for 4000 steps,
employing a learning rate scheduler that features a linear
warm-up from 0 to 0.018, followed by a cosine decay to a
final value of 0.012. To improve training stability, we clip
the gradients using a maximum norm of 0.1. Optimization
takes approximately 15 minutes in total (including both the
pretraining and training stages) on an A100 GPU.

For computing the SDS loss, we utilize the Stable Diffu-
sion 2.1 model from the diffusers library [3].

In all experiments we optimize the network using color
control, where the prompts are structured using the follow-
ing format:

” A minimalist vector art of [object], isolated on a [color]
background.”

Here, [object] specifies the desired scene to be generated,
and [color] represents the background color, which is either
sampled during training or provided by the user at infer-
ence.

When applying our dropout technique, the indices are
sampled as follows: with a probability of 0.7, all 16 shapes
are rendered. Otherwise, the truncation index, between 1
and 16, is sampled from an exponential distribution with a
temperature value of 3, favoring smaller indices and thus
rendering fewer shapes more often.

LoRA Fine-Tuning As detailed in the main paper, our
SDS loss is applied with a LoRA adapter applied to
Stable Diffusion 2.1. This adapter was pretrained on
a high-quality dataset of vector art images. Specifi-
cally, the adapter was trained using 1,600 images span-
ning 145 different prompts, with minor variations between
prompts (e.g., with different background colors). These im-
ages were generated using the Simple Vector Flux LoRA
(see renderartist/simplevectorflux from dif-
fusers.). Examples can be seen in Figure 1.

The LoRA adapter was trained for 15,000 steps with a
rank of 4.

Figure 1. LoRA Fine-Tuning data. Example images from the
dataset used for LoRA fine-tuning in our approach.

Overall Quality

Prompt Adherence

SVG Editability 76.80%

SVGDreamer

Overall Quality 79.50%

Prompt Adherence

SVG Editability 74.50%

VectorFusion

Bmm Ours mEm Baseline
Figure 2. User Study. We ask respondents to evaluate the con-
sidered methods in terms of overall quality, how well the resulting
SVGs match the input text prompt, and the overall editability of
the SVGs. We report the percent of responses that preferred our
method compared to the alternative approaches.

2. User Study

We conducted a user study to evaluate NeuralSVG based
on three key aspects: (1) the overall quality of the generated
SVGs, (2) how well the results aligned with the input text
prompt, and (3) the editability of the SVGs. For this, we
performed head-to-head comparisons between our method
and the two open-source approaches, VectorFusion [1] and
SVGDreamer [4], each utilizing 16 learned shapes. To as-
sess editability, users were shown both the rendered SVGs
and their corresponding outlines. For each comparison, we
sampled 7 results, with a total of 210 responses collected
per baseline from 30 participants.

Cumulative CLIP Similarity Scores (With and Without Dropout)

CLIP Similarity Score

NeuralSVG NeuralSVG w/o Dropout

0.2
0 20 40 60 80 100

Percentage of Paths
Figure 3. Cumulative CLIP Similarities With and Without
Dropout. We show cumulative CLIP similarities achieved by
NeuralSVG trained with and without dropout across 50 prompts,
using 16 learnable shapes.

The complete results are presented in Figure 2, where
we report the fraction of times our method was preferred
over each baseline. As shown, users strongly favored our
approach over existing methods in terms of overall visual
quality, prompt adherence, and practical usability.

3. Ablation Studies

In the main paper, we demonstrated the advantage of train-
ing NeuralSVG with our dropout technique to achieve more
recognizable outputs when rendering with a limited number
of shapes. In Figure 3, we present the CLIP-space simi-
larities between our 128 input prompts and the generated
SVGs, where the shapes are selected sequentially from the
learned set of 16 shapes. As shown, when using only a small
number of shapes, the resulting SVGs are more easily rec-
ognized by CLIP. This suggests that the individual shapes
carry more standalone meaning, aligning with our intended
goal.

4. Limitations

While we have demonstrated that NeuralSVG can effec-
tively generate high-quality, editable vector graphics, cer-
tain limitations should be considered.

First, in some cases, the network may struggle to sepa-
rate shapes, sometimes mapping different indices to simi-
lar shapes. This can lead to redundancies, where multiple
shapes represent the same semantic part (see Fig. 4, top).
However, thanks to our ordered representation, these redun-
dancies can be mitigated at inference time by discarding un-
necessary shapes, particularly for simpler scenes requiring
fewer than 16 shapes.

Second, the small number of shapes used in this work
and our regularization technique can make it challenging
to capture complex scenes, such as those containing multi-
ple objects or an object within a specific background setting
(see Fig. 4, bottom). Additionally, we find that incorpo-

“a boat”

‘““a banana”

“a hedgehog” “a pumpkin”

“a hot air balloon «
with a yin-yang

i symbol, with
wearing a red w
sweater” the moon visible...

Figure 4. Limitations. Top: NeuralSVG may generate redundant
shapes, particularly in simpler scenes that require fewer than 16
shapes. Bottom: NeuralSVG may struggle to accurately capture

complex scenes containing multiple objects or actions, sometimes
resulting in missing objects or misalignment with the prompt.

acowboyina “astop sign
large hat and with a large tree
»» leather boots” behind it”

jumping up to
hug a woman

rating our color palette and aspect ratio controls impacts
model convergence, making optimization more challeng-
ing. This issue could be addressed by exploring alterna-
tive ways to introduce these controls into the optimization
process, potentially incorporating additional loss objectives
to help guide convergence. Finally, our method relies on
an SDS-based optimization process per prompt, making it
less scalable compared to feed-forward approaches. While
our representation enables users to dynamically modify the
learned output at inference time, we aim to explore efficient,
feed-forward methods for text-to-SVG generation to further
improve practical usability. We demonstrate these limita-
tions in Figure 4.

S.

Additional Results and Comparisons

Below, we provide additional qualitative results and com-
parisons, as follows:

1.

2.

In Figure 5 we show additional results from optimizing
NeuralSVG with aspect ratios of 1:1 and 4:1.

In Figures 6 and 7, we present additional qualitative
results produced by NeuralSVG when applying our
dropout technique during inference. Specifically, we
vary the number of learned shapes included in the final
rendering, showing results with 1, 4, 8, 12, and all 16
shapes.

In Figures 8 and 9, we provide additional qualitative
comparisons to open-source text-to-vector methods Vec-
torFusion [1] and SVGDreamer [4].

Following Figure 8, we provide corresponding outlines
for the generated SVGs, showing that alternative meth-
ods have a tendency to produce nearly pixel-like shapes
that are difficult to modify manually while NeuralSVG
promotes individual shapes with more semantic mean-
ing and order.

. In Figure 11, we provide additional qualitative compar-

isons to closed-source techniques NIVeL [2] and Text-
to-Vector [5] using results presented in their respective
papers.

Next, in Figures 12 and 13, we show results obtained
when rendering the learned SVG with different back-
ground colors at inference time, with both seen and un-
seen colors.

. Finally, in Figure 14, we show sketch generation results

obtained using our NeuralSVG framework. Sketches are
rendered using a varying number of strokes by modi-
fying the truncation index at inference time. This ap-
proach enables a single learned representation to gen-
erate sketches at multiple levels of abstraction without
modifying our text-to-vector framework.

References

(1]

(2]

(3]

(4]

Ajay Jain, Amber Xie, and Pieter Abbeel. Vectorfusion: Text-
to-svg by abstracting pixel-based diffusion models. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 1911-1920, 2023. 1,3, 7,8
Vikas Thamizharasan, Difan Liu, Matthew Fisher, Nanxuan
Zhao, Evangelos Kalogerakis, and Michal Lukac. Nivel: Neu-
ral implicit vector layers for text-to-vector generation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 4589—4597, 2024. 3, 10
Patrick von Platen, Suraj Patil, Anton Lozhkov, Pedro Cuenca,
Nathan Lambert, Kashif Rasul, Mishig Davaadorj, Dhruv
Nair, Sayak Paul, William Berman, Yiyi Xu, Steven Liu, and
Thomas Wolf. Diffusers: State-of-the-art diffusion models.
https://github.com/huggingface/diffusers,
2022. 1

Ximing Xing, Haitao Zhou, Chuang Wang, Jing Zhang, Dong
Xu, and Qian Yu. Svgdreamer: Text guided svg generation

with diffusion model. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
4546-4555,2024. 1,3,7,8

[5] Peiying Zhang, Nanxuan Zhao, and Jing Liao. Text-to-vector

generation with neural path representation. ACM Transactions
on Graphics (TOG), 43(4):1-13, 2024. 3, 10

https://github.com/huggingface/diffusers

“a train”

Naive
Squeeze

< g L
=
o
3 @)
“a hat”

Naive
Squeeze

With
Control

B

“Superman flying”

“a sports car”

- 8

Figure 5. Dynamically Controlling the Aspect Ratio. Additional results from optimizing NeuralSVG with aspect ratios of 1:1 and 4:1.
In each pair of results, the top row shows the naive approach of squeezing the 1:1 output into a 4:1 aspect ratio. The bottom row shows the
results where our trained network directly outputs the 4:1 aspect ratio.

Naive
Squeeze

With
Control

Naive
Squeeze

With
Control

“an owl standing on a wire” “a fox and a hare tangoing together”

TRRRR

£
9

“a knight holding a long sword” “a fox playing the cello”
“avocados” “a girl with dress and a sun hat”
“a baby penguin” “a delicious hamburger”

VWML asEsss

“a blue poison-dart frog sitting on a water lily” “a magician pulling a rabbit out of a hat”

NS

“a chihuahua wearing a tutu” “the titanic, aerial view”
n g y % V/
) ” ‘ / /
“a colorful rooster” “a baby bunny sitting on top of a stack of pancakes”
‘ ' , < ’ ’
@ C
“a donut with pink frosting” “a shiba inu”
- ’/ .nnn
“earth” “a stork playing a violin”
dOVVY S O O
“an erupting volcano” “The Sydney Opera House”

POV . » od

Figure 6. Additional Qualitative Results Obtained with NeuralSVG. We show results generated by our method when keeping a varying
number of learned shapes in the final rendering.

“a great gray owl with a mouse in its beak” “a margarita”

+» £ 27 Mbdbdbdid

“a sailboat” “a peacock”
“a girl with a sun hat” “a picture of a macaw”
“an erupting volcano” “a punk rocker with a spiked mohawk”

ALLAATRIRENN

“an astronaut walking across a desert...”

“a superhero”

“a brightly colored mushroom growing on a log” “an elephant”

- 22 2 < DOERM
A a4 4)

“a 3D rendering of a temple”

3 8312
“a clown on a unicycle” “family vacation to Walt Disney World”
LR T AN
“a friendship” “a hedgehog”

-

anu

“a wolf howling on top of the hill, with a full moon in the sky”

Wi " -‘ "

A4 4 A

Figure 7. Additional Qualitative Results Obtained with NeuralSVG. We show results generated by our method when keeping a varying
number of learned shapes in the final rendering.

“a Japanese sakura tree on a hill”

N > G >

-

“a picture of a macaw

.

“German shepherd”

<P A ¥

“penguin dressed in a tiny bow tie”

r 'S P'v
n 6 Lf "" ;

“a politician giving a speech at a podium”

tl“il-

“Darth Vader”

3

\L[

“a family of bears passing by the glacier”

“a walrus smoking a pipe”

(Eij A

VectorFusion ~ VectorFusion SVGDreamer SVGDreamer NeuralSVG
(16 Shapes) (64 Shapes) (16 Shapes) (256 Shapes) (16 Shapes)

Figure 8. Additional Qualitative Comparisons. We provide additional visual comparisons to VectorFusion [1] and SVGDreamer [4]
using a varying number of shapes.

“a sailboat”

A
|
1

“a lake with trees and mountains in the background, teal sky”

“a coffee cup and saucer”

“a drag\;n'fb’reathing fg’b
\
‘ TS

VectorFusion ~ VectorFusion SVGDreamer SVGDreamer NeuralSVG
(16 Shapes) (64 Shapes) (16 Shapes) (256 Shapes) (16 Shapes)

Figure 9. Additional Qualitative Comparisons. We provide additional visual comparisons to VectorFusion [1] and SVGDreamer [4]
using a varying number of shapes.

“a picture of a macaw”

“a man in an astronaut suit walking across the desert, planet mars in the background”

S
Y

VectorFusion VectorFusion SVGDreamer SVGDreamer NeuralSVG
(16 Shapes) (64 Shapes) (16 Shapes) (256 Shapes) (16 Shapes)

Figure 10. Shape Outlines of the Generated SVGs. We present the corresponding outlines of SVGs generated by NeuralSVG, VectorFu-
sion, and SVGDreamer for the results shown in Figure 8. The alternative methods often produce nearly pixel-like shapes that are difficult
to modify manually. In contrast, NeuralSVG generates cleaner SVGs, making them more editable and practical.

“a cake with chocolate

. “a boat”
frosting and cherry”
“a 3D rendering of a temple” “a crown”
SRS,
-
“a green dragon breathing fire” “a giraffe in street”
“a walrus smoking a pipe” “a Ming Dynasty vase”
“a vintage camera” “a picture of Tokyo”

|

“a baby bunny on a “a smiling sloth wearing
stack of pancakes” a jacket and cowboy hat”
\
o ’
- — A

“a spaceship” “a dragon-cat hybrid”

NS

“a stork playing a violin” “a painting of the Mona Lisa”

AR

“A Japanese sakura tree on a hill”

A

NiVEL NeuralSVG Text-to-Vector NeuralSVG

“The Statue of Liberty
with the face of an owl”

%)

“a torii gate”

A T

“Vincent Van Gogh”
»

“an erupting volcano”

N A

“a cruise ship”

|~

“a spaceship”

t;gi

“an espresso machine”

23

“chocolate cake”

’
-

“a Starbucks coffee cup”

&

Text-to-Vector NeuralSVG

Figure 11. Qualitative Comparisons. As no code implementations are available, we provide visual comparisons to NIVeL [2] (left

colunms) and Text-to-Vector [5] (right columns) using results shown in their paper.

“a walrus smoking a pipe”

ceeHececee

“The Sydney Opera House”

AL e TR e

©

A RN A

w AR B0 SRV

BV v WO
P b

AAAD

»»
{EIRE) (K}
WA AD
HY5) BEE

Figure 12. Dynamically Controlling the Color Palette. Given a learned representation, we render the result using different background
colors specified by the user, resulting in varying color palettes in the resulting SVGs. The 5 leftmost columns show colors observed during
training while the 5 rightmost columns show unobserved colors.

“a colorful rooster”

“a boat”

KXY PP Y.
< BN - FYS R

“an elephant”

C EEELEEEETY]

“a tree”

AP ET® AT TR

“a tiger karate master”

HAa~AHEAA-=A

INAXRAXXYXYXX
\ \ \ \ \ \
"PPYY PP
AAARAN A

N < s
B5535855555
M « wBwwwww

“a crown”
Figure 13. Dynamically Controlling the Color Palette. Given a learned representation, we render the result using different background
colors specified by the user, resulting in varying color palettes in the resulting SVGs. The 5 leftmost columns show colors observed during
training while the 5 rightmost columns show unobserved colors.

“a ballerina” “a bull”

FYYY YW W

“a boat” “a baby penguin”
_/: RS S B N M S
g0 -2 N
- sy
“a cat” “a sailboat”
5 PG
ad) ad)) e
“a giraffe” “a lizard”

Z V4
~/ =&

/\ ﬁ%\ M

“a rocket ship” “a margarita”
/% =2
— = =
“a rooster” “a glass of wine”
= = =
“a strawberry” “a teapot”
Q_,Q @Q g_:jg)
4 8 16 32 4 8 16 32

Figure 14. Additioanl Sketch Generation Results. NeuralSVG can generate sketches with varying numbers of strokes using a single
network, without requiring modifications to our framework.

	Additional Details
	User Study
	Ablation Studies
	Limitations
	Additional Results and Comparisons

