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1. Ablation Study

To justify the technical choices we made and evaluate the
contribution of each component we perform an ablation
study.
Impact of global latent space. In particular, we divide the
ablation into three major categories to capture all aspects of
the proposed model. We first evaluate the contribution of
the global latent code by modifying imHead latent space to
a set of local latents, reported as w. Local Lat.. We follow
NPHM and use 32 latent dimensions for each of the K=32
regions resulting in a total 1248 latent space, 4.87× increase
compared to 256 that we use in imHead. In addition we re-
port the performance of another variation that extends the
local latents to include an additional global identity latent,
following the architectural design of NPHM, reported as w.
Local and Global Lat.. The total latent space of this model
is 1344 (same as NPHM) which reflects to 5.25× increase
in the latent size. Finally, to demonstrate the impact of a
single global latent space, we report the results of a model
trained with a local latent space where each region receives
a local latent of size 8, resulting in a latent space size of
312. As can be easily observed in Tab. 1, utilizing a split
latent space diminishes the reconstruction performance of
the network. This significantly deteriorates when we use a
latent space with the size of 312, where the model strug-
gles to achieve reasonable performance. The reason behind
this, as suggested in [4, 11, 12], is that global patterns of
the shape are copied in each local latent which inevitably
increase the size of the model. To enable a fully local latent
space, whilst also achieving sufficient reconstruction per-
formance, it is necessary to increase each latent sufficiently
enough to encode both global and local information. An
intermediate solution is to build a local-global latent space,
similar to NPHM model. Although this approach achieves
similar performance with imHead, it suffers from two main
factors: a) a 5× larger latent space which limits the shape
compression and b) a highly constrained latent space that
prohibits localized face editing as the latent codes are now

extended with global information. imHead can successfully
bridge both worlds by leveraging a compact latent space
along with an intermediate localized representation that can
facilitated disentangled manipulation.

Impact of FusionNet. To demonstrate the impact of the
proposed structural blending network, we train a model that
directly regress the local SDF from each local-part network
without using an intermediate feature representation as in
imHead. Despite being slightly lighter model, the perfor-
mance of the the model drops significantly, as each of the
local networks need to directly predict the global SDF. It is
also important to note that the normal consistency of the re-
constructions deteriorates due to non-smooth blending. In
contrast, when using the proposed FusionNet, the local fea-
tures are aggregated and the SDF values are regressed us-
ing an intermediate feature representation. This allows the
model to learn more complex representations while achiev-
ing smooth reconstructions.

Impact of Local Canonical Space. We additionally report
the effect of using a per-region canonical space (w/o Local
Canonical Space). In particular, each local-part network
uses a canonical space that is defined around its correspond-
ing keypoint kj as:

f jx = gj(x− kj , zjid) (1)

where f jx denotes the j-th feature embedding correspond-
ing to point x and kj represent the generated landmark
keypoint corresponding to region j. This canonical space
can effectively reduce the workload of each local part net-
work and facilitate the training process. As can be seen in
Tab. 1, apart from the training stability, the canonical space
has a positive impact on the reconstruction performance of
imHead, as we observe a significant performance improve-
ment when using a canonical space for each local-part net-
work (imHead-Full).
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NPHM MimicMe
Method CD ↓ NC ↑ F@5mm ↑ CD ↓ NC ↑ F@5mm ↑

w. Local Lat. (d = 312) 0.876 0.915 0.689 0.874 0.914 0.721
w. Local Lat. (d = 1248) 0.775 0.948 0.743 0.767 0.939 0.788
w. Local and Global Lat. (d = 1344) 0.494 0.964 0.841 0.569 0.958 0.857
w/o FusionNet 0.595 0.954 0.808 0.674 0.947 0.812
w/o Local Canonical Space 0.723 0.934 0.723 0.884 0.946 0.732
imHead-Full 0.459 0.988 0.898 0.533 0.986 0.873

Table 1. Ablation Study of different key components of imHead.

2. Robustness to Noise

Given that the proposed model was trained on raw scans
with a considerable amount of noise, it can achieve ro-
bust reconstructions even under noisy point cloud inputs.
In particular, to evaluate the reconstruction performance of
imHead under noise scenarios, we add Gaussian noise of
different standard deviations to the input point clouds and
measure the performance drop. As can be seen in Fig. 2,
imHead can achieve reasonable reconstruction that retain
the identity characteristics even with noise levels that corre-
spond to 1.5 standard deviations.
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Figure 1. Reconstruction Error under Noisy Inputs. We mea-
sured the reconstruction error under different noise levels of the
input point cloud.

Figure 2. Qualitative Evaluation of fitting under Noisy Inputs.
We insert Gaussian noise to the input point clouds and measure the
reconstruction performance.

3. Limitations and Societal Impact
As stated in the main paper, although imHead makes a step
towards full head modeling, it still suffers from some limi-
tations. In particular, implicit models, in contrast to explicit
3DMMs suffer from slow inference times. To obtain a high
resolution head it is required to sample and predict the SDF
for a sufficient number of points which could significantly
reduce the runtime of the method. It must be also noted
that SDFs require an additional post-processing marching
cubes step which can further reduce the inference speed of
the method. In contrast, 3DMMs can leverage fast render-
ing techniques and may provide a more efficient method in
tasks where runtime performance is key priority. Implicit
surfaces are also known to struggle capturing fine-grained
details and fail to accurately model thin surfaces such as
the hair strands. In addition, although as we experimentally
show, imHead preserves the face correspondences there is
not an 1-1 mapping similar to the case of explicit models.
Furthermore, as noted in the main paper, localized editing
is constrained by the fixed number of anchors that define
each region. The editing process can also be influenced by
the contributions of nearby local-part networks, which are
designed to ensure smooth and plausible surfaces, but will
affect the accuracy of edits especially at the boundaries. Fi-
nally, despite curating a large-scale dataset, there are still
race biases within the dataset. This also includes the hair
regions which are directly adapted from the NPHM dataset,
which has also limited diversity and cannot adequately rep-
resent all hair types. As an extend, imHead also shares the
same demographic biases that should be taken into consid-
eration when using imHead for downstreaming tasks. De-
spite the biases, as can be seen in 3, imHead can generalize
well in out-of-distribution and non-Caucasian ethnicities.
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Figure 3. Reconstruction performance on non-Caucasian eth-
nicities. Despite the demographic biases, imHead can accurately
reconstruct out-of-distribution samples.

4. Dataset Curation
To enable large-scale head modeling we utilized MimicMe
datasets [8], which consists of 5,000 distinct subjects un-
der different expressions. MimicMe dataset was collected
using a 3dMD face capture system. The raw scans have a
resolution of approximately 60,000 vertices. We filter the
dataset to avoid noisy scans, resulting in a total of 4,000
distinct subjects being retained, with available metadata in-
cluding gender (57% male, 43% female), age (1− 81 years



old) and ethnicity (73% White, 13% Asian, 7% Mixed
and 3% Black, 4% Other). Notably, the collected head
scans demonstrate significant diversity across age, ethnic-
ity, and height, marking progress toward a universal full
head model. In comparison to previous implicit head mod-
els [5, 15], the curated dataset encompasses over 600 chil-
dren under the age of 12, as well as more than 100 individ-
uals aged over 60.

To bring the raw scans into dense correspondence, we
utilized a multi-step pipeline. Initially, the scans were ren-
dered from multiple views and 2D joint locations were de-
tected using RetinaFace [3]. Subsequently, the 2D landmark
locations were lifted to 3D by utilizing a linear triangula-
tion and projected to the 3D surface. Using the 3D detected
keypoints, we fit FLAME parametric model by optimizing
the pose and expression parameters to align the template
head to the exact pose, expression and shape of each raw
scan. Specifically, we optimize the pose θ, expression ψ
and shape β parameters using following loss function:

L = LJ + Lcd + ||β||2 + ||ψ||2 + ||θ||2 (2)

where LJ = ||J − Ĵ ||2 is a keypoint loss that enforces
FLAME landmakrs Ĵ to match the detected keypoints Ĵ and
Lcd is the chamfer distance loss that minimizes the scan to
FLAME distance. The optimization process was performed
using Adam optimizer with learning rate of 1e − 3. We
complete the full head of the aligned scans by fitting NPHM
model [5]. However, a lot of the identity details of the sub-
ject might have been diminished during the fitting process.
To retrieve the identity details we perform a Non-rigid Iter-
ative Closest Point algorithm (NICP) [1] between the fitted
meshes and the 3D raw scans. The proposed fitting and reg-
istration process enables the capture of rich facial details
while ensuring plausible head surfaces with minimal recon-
struction error. As shown in Fig. 4, the non-rigid ICP step
helps mitigate racial biases that may arise during the fitting
process.
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Figure 4. Registration and Data Curation Errors. We report
reconstruction errors during the data curation process for different
ethnicities and expressions.

5. Implementation Details
In this section we provide the implementation details of the
different components of our network.

5.1. Identity Network
The identity network of the proposed imHead model is com-
posed of three main modules: the Decomposition network,

the Local-Part Networks and the Fusion network. Bel-
low we describe the implementation details for each one of
them:
Decomposition network. The Decomposition network is
responsible for the mapping of the global identity latent
codes zid to a set of localized embeddings {zjid} that span
the 3D head. We define zid using a simple Embedding
layer that maps dataset instances to a 256-dimension la-
tent code. Using a fully connected layer, we project the
global latent zid to K embeddings of 32 dimensions each.
We follow NPHM [5] and select K = 39 keypoints that
span the 3D head, resulting in a localized embedding with
a total of 1248-dimensions. Using this simple yet efficient
mapping we can achieve both compact global latent space,
which can effectively improve the reconstruction capabili-
ties of the network [12, 14] along with a localized interme-
diate representation that enables localized editing.
Landmark Regression. Following the latent embedding
split, we use an MLP to regress the keypoints of the head,
that will serve as the local coordinates for each region. In
particular, we use a three-layer MLP that receives the set
of local embeddings {zjid ∈ R32} as input and predicts the
K=39 facial keypoints {kj ∈ R3}. We opted to use the
intermediate local embedding representation to regress the
facial landmarks as it can provide more robust estimations
even after shape manipulations.
Local-Part Networks. Using a point sampled from the 3D
space x ∈ R3, we use an enseble of local-part networks to
extract a point-specific feature fj per region. To acquire the
local part-specific feature fj , we feed point x along with the
localized embeddings {zjid} to their corresponding local-
part module. To better capture the high frequency details of
the shapes [10], we use a set of positional embeddings as
defined in [7]:

γ(x) =
(
x,

sin(20πx), cos(20πx),

sin(21πx), cos(21πx), . . . ,

sin(2L−1πx), cos(2L−1πx)
)

that map the points x to a high dimensionality. We use
L = 7 frequency bands. Before feeding each point to
the corresponding local-part network, we first normalize it
according to the keypoint kjid associated with each part-
network. This step is essential to normalize the coordi-
nate system of each part network and not only achieve ef-
ficient and stable training but increase the expressivity of
the network. We implement each local-part network using a
small DeepSDF module with 4 layers and a hidden dimen-
sion [9] of 200. Following the implementations of [9] we
use softplus activation function.
Fusion Network. The final step of our identity network
is to fuse the extracted feature codes fj from each part-



network j back to a single global feature that will be used
to regress the final SDF of point x. Although an obvious
choice would be to directly regress the fused SDF from the
local-part networks, as we experimentally show in the abla-
tion study, this choice significantly reduces the reconstruc-
tion quality and limits the editing properties of the network.
We obtain the fused global feature vector using:

f̂x =

K∑
j

w(x,kj)f
j
x (3)

where w(x,kj) scales the contribution of each feature em-
bedding based on position of the point x:

w(x,kj) =
e

−||x−kj ||2
σ∑K

j e
−||x−kj ||2

σ

(4)

The final feature vector along with the correspond point x is
then fed to the FusionNet to predict the final signed distance
field y:

y = Fθ(x, f̂x) ∈ R (5)

We implement the fusion network as a small DeepSDF
module [9] with 4 layers and 200 latent dimensions. Simi-
lar to the local-part networks, we use softplus activation
function.

5.2. Expression Warping Module

Our expression module is responsible for backward-
warping the sampled points from the observation space
xobs ∈ R3 to the canonical space of the identity network.
To enable fast integration to existing pipelines we define
zexp using the expression parameters of FLAME model [6]
acquired during the fitting process of the dataset. The
FLAME expressions are then fed to a higher dimensional
latent space and used to condition the expression warping
module. Given that imHead is conditioned on FLAME ex-
pression parameters, it can be easily adapted to existing
pipelines and generalize to unseen expressions as shown in
Fig. 5 Similar to the previous networks, we implement the
expression module using a DeepSDF network with 8-layers
with 128-hidden dimensions.

Figure 5. Generalization to unseen expressions. Given that im-
Head is relies on FLAME [6] expression space, it can easily gen-
erate out-of-distribution expressions.

6. Backward vs. Forward Warping

Backward warping has been widely used across implicit
field [2, 13, 15] achieving robust results and offering several
advancements over traditional forward deformation warp-
ing. Specifically, backward warping does not require any
costly registration process to bring the scans in dense corre-
spondence. In contrast, forward deformation methods such
as NPM [5] and NPHM [5] require a registration step to
non-rigidly aling the scans to calculate the target defor-
mation fields. Additionally, forward deformation methods
heavily rely on iterative root finding schemes, which apart
from time consuming optimization processes introduced,
can also affect the robustness of the parametric model. In
particular, as shown in Fig. 6, forward deformation meth-
ods, can fail in cases of noisy scans where the inverse cor-
respondences are not established correctly

Scan Scan +Noise imHead NPM NPHM

Figure 6. Failure cases of forward deformation methods.
Given that forward warping methods rely on iterative root-finding
schemes, inaccurate correspondences can significantly impact re-
construction performance.
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