Enrich and Detect: Video Temporal Grounding
with Multimodal LL.Ms
(Supplementary Material)

Supplementary material contents. This supplementary
document is structured as follows: Section A visualizes
additional qualitative results which aim to provide further
insight into ED-VTG’s function and performance; Section
B provides additional ablations; Section C provides addi-
tional comparison with task-specific specialist baselines for
fine-tuned STG task; Section D presents more details on the
pseudo-label generation process; Section E discusses the in-
structions used for different tasks; Section F presents some
failure cases; Section G explains our hyper-parameter selec-
tion; Section H provides more details on the processing of
all datasets used for training (Section H.1) and fine-tuning
and evaluation (Section H.2).

A. Additional Qualitative Results

We show qualitative examples in Figure A.l, where we
compare ED-VTG’s predictions to the TimeChat [45] base-
line and the ground truth annotations. ED-VTG is trained
with MIL, therefore during inference it can choose to enrich
the original query if it is incomplete, or use ts as is when it
is sufficient. In Figure A.2 we show example detections of
ED-VTG using the predicted enriched queries and a base-
line version where a model with the same architecture is
trained to always use the original queries. These examples
clearly demonstrate how the enriched queries often contain
relevant details that enable ED-VTG to perform more accu-
rate temporal localization than the baseline.

B. Additional Ablation Study

We conduct additional ablation experiments on two differ-
ent training augmentations for query transformations com-
pared to our cascaded enrich and detect setup, and report
zero-shot numbers with increasing amount of pre-training
data, showing the scalability of ED-VTG.

Offline Query Paraphrasing. In this setup, we use a blind
LLaMA 3.1 8B [7] to paraphrase and grammatically correct
the input queries in the training set. Notably, the LLaMA
model is text-only, and does not have access to the video,
and hence can not enrich the queries, but just paraphrases
them for better grammatical construction. During evalua-
tion, we also augment the queries in the same fashion. As
shown in Table B.1, such an augmentation techniques does

Training Paradigm

Charades-STA STG ANet-Captions STG
R@0.3 R@0.5 mloU | R@0.3 R@0.5 mloU

Detect 514 315 332 | 503 30.1 340
Offline Paraphrasing + Detect 51.4 31.6 327 | 505 30.8 339
Offline Enrich w/o Interval Anno. + Detect | 51.7 31.1 31.9 49.5 29.1 329
Offline Enrich + Detect 51.7 315 334 | 498 299 337
Enrich & Detect 60.1 370 384 | 563 355 378

Table B.1. Ablation on enrichment as a training pre-processing
step. We compare the proposed enrich & detect framework with
two additional augmentations using LLMs. In the “Offline Para-
phrasing + Detect” setup, we use a blind LLaMA 3.1 8B [7]
to paraphrase and grammatically correct the input queries. In
the “Offline Enrich w/o Interval Annotation + Detect” setup, we
augment the queries with LLaVA OneVision 72B [21] as pre-
processing, where the model sees the video, but does not have
access to the ground truth labels. We observe that the proposed en-
rich & detect is superior since the trained model learns to perform
autonomous enrichment during evaluation, which proves that the
cascaded detection paradigm is significantly different than training
augmentation. Reported results are in FT w/o PT setting.

not bring any notable improvement on Charades and Activ-
ityNet datasets for STG task.

Offline Query Enrichment w/o Annotated Intervals. In
this second setup, we employ a multimodal LLaVA OneVi-
sion 72B model [21] for query enrichment as a form of
training augmentation. Unlike the approach in Table 8
of the main paper, we do not crop the input video to the
ground-truth interval in this setup. As a result, the model
often incorporates irrelevant contextual information into the
query, which is not helpful for localizing the desired inter-
val. Consequently, as shown in Table B.1, this type of aug-
mentation negatively impacts model performance. Overall,
these ablation experiments demonstrate that our proposed
enrich & detect approach is fundamentally different from
training augmentations using LLMs. The trained model
can independently enrich queries with necessary details or
choose to directly ground the input query.

Pre-training Dataset Size. Table B.2 shows the effect of
increasing training data on zero-shot Charades-STA STG
and NExT-GQA QG datasets. We perform best when incor-
porating all tasks and datasets, denoting the usefulness of
unified pre-training.

Comparison of Latency. We compare the inference speed
of ED-VTG with and without the interval decoder on the
Charades STG benchmark in ZS setting. Using the same



[ Query: person opens door. ]

[

0.0 8.2 Ground Truth 11.6 31.0
[ I ]
0.0 TimeChat 17.3 31.0
[ I [ |
0.0 8.1 ED-VTG 11.8 31.0

[ Enriched query by ED-VTG: the person is opening the cupboard door before starting to put away groceries. }

[ Query: the person is talking. ]

[ ]
0.0 5.0 Ground Truth 15.8
[ ] I ]
0.0 11.7 TimeChat 14.6 15.8
[ I ]
0.0 5.2 ED-VTG 8.3 15.8

[ Enriched query by ED-VTG: the person is seen talking on their phone while standing in front of a desk with a lamp and a mirror. ]

[ Query: the person exits the room, and quickly reenters. ]

[
0.0 1.8

Ground Truth 6.0 32.0
[ ] 1
0.0 0.9 TimeChat 32.0
[ I I ]
0.0 1.8 ED-VTG 5.9 32.0

ED-VTG chooses to use the original query: the person exits the room, and quickly reenters.

Figure A.1. Examples of query enrichment and localization made by ED-VTG on single-query temporal grounding (STG) task
from the Charades-STA [8] dataset. We also show the prediction made by one baseline model, TimeChat [45], which directly ground
the input queries using raw-text timestamp representation. Since we train ED-VTG using the MIL paradigm, the model can choose to use
the input query directly or enrich it during evaluation. In the last example, since the input query is clear and explicit, the model directly

localizes it.

.. # Samples | Charades-STA STG | NExT-GQA QG
Pre-training Tasks R@0.3 R@05 mloU ‘ mloP  mloU
STG 918K | 553 359 370 | 325 248
STG + VPG 1334K | 590 387 398 | 341 261
STG+VPG+AG 136K | 595 3901 399 | 342 266

Table B.2. Ablation on the number of pre-training tasks and
samples. We receive the best scores when using all tasks together,
showing the benefit of unified pre-training and model’s scalability.
Reported results are in zero-shot setting.

compute infrastructure and averaging over 3 evaluation
runs, the model without decoder requires 2.10 seconds for

every sample, while with decoder, it spends 2.15 seconds.
Moreover, the training speeds of both models are similar,
with the decoder adding only a negligible 0.2% to the total
trainable parameters. This suggests that incorporating the
decoder has a minimal impact on the model’s latency.

Effect of interval decoder. We examine the impact of dif-
ferent timestamp representations in Figure B.1, comparing
our lightweight decoder to using raw text or special tokens
for generating time intervals. For this analysis, we fine-tune
the Video-LLaMA checkpoint on the Charades and Activi-



[

0.0 Ground Truth 10.9 30.6

[ ]

0.0 6.8 Baseline w/o enrich 18.5 30.6
Original query: person laughs in the kitchen.

] I ]

0.0/1.3 ED-VTG (enrich and detect) 12.3 30.6

Enriched query: a person in a blue shirt and jeans is seen holding a pink pillow
with a colorful design, laughing and then placing it on a table in the kitchen.

]
121.4

0.0 31.1 Ground Truth 51.3

]

0.0 18.8 Baseline w/o enrich 60.5 121.4
Original query: the man comes back to talk to the woman.

[ I I ]

0.0 /9.2 ED-VTG (enrich and detect) 53.0 121.4

Enriched query: after carefully looks into the pottery near the
wall, the man walks back towards the woman and starts talking.

Figure A.2. Comparison of detections of ED-VTG using its predicted enriched queries against a baseline version trained to always
use the original queries. The enriched queries contain additional relevant details and context that enable ED-VTG to perform more
accurate temporal localization. In the first example, which is taken from Charades-STA [&], the additional details in the enriched query
provide a more complete description of objects and actions that is more easily groundable. In the second example, sourced from the
ActivityNet-Captions [ 18] dataset, the enriched query provides additional temporal context which leads to more precise temporal boundary

prediction.
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Figure B.1. Ablation study on timestamp representation by
the interval decoder. We compare performance of our proposed
lightweight decoder vs timestamp as raw text [11, 26, 34, 45] vs
timestamp representation by special tokens [12, 42, 52], and find
the decoder to be significantly better than both other techniques.
Reported results are in FT w/o PT setting.

tyNet STG benchmarks, as shown in Figures B.1a and B.1b.
Both datasets exhibit noticeable performance degradation
when the decoder is omitted. Additionally, using hundreds
of special tokens increases training complexity, leading to
significantly poorer results at lower LoRA ranks. Since
numeric digits or tokens representing frame indices lack

a causal relationship in autoregressive generation, the de-
coder facilitates a more efficient training process. Further-
more, introducing tailored grounding objectives enables the
model to produce precise timestamps.

C. Comparison with Specialist Baselines

Table C.1 extensively compares the ED-VTGwith vari-
ous task-specific specialist models for the fine-tuned STG
task on Charades-STA, ActivityNet-Captions, and TACoS
dataset. On Charades, ED-VTG beats strong specialist
baselines like UnLoc [60], UniVTG [27], MomentDiff [25],
QD-DETR [37], CG-DETR [36], etc., while models like
EMB [14], EaTR [15], and SG-DETR [10] perform bet-
ter than ours. We observe a similar trend on the other two
benchmarks. However, since the specialist models are often
tailored to a particular task and dataset, they usually show
poor transferability, whereas ED-VTG demonstrates state-
of-the-art zero-shot performance, as shown in Table 2 of
our main paper. Nevertheless, the strong performance by
ED-VTG on fine-tuning setting significantly closes the gap
between MLLMs and specialist baselines.



Method Generalist  # Train Eval. Charades-STA ActivityNet-Captions TACoS

Model Samples R@0.3 R@0.5 R@0.7 mloU | R@0.3 R@0.5 R@0.7 mloU | R@0.3 R@0.5 R@0.7 mloU
VSLNet (C3D) [65] X — FT 64.3 47.3 30.2 452 63.2 43.2 26.2 432 29.6 243 20.0 24.1
CTRL [9] X FT 23.6 8.9 18.3 13.3
GTR-H [5] X FT 62.6 39.7 50.6 29.1 40.4 30.2
2D-TAN [66] X — FT 57.3 45.8 27.9 41.1 60.3 434 25.0 42.5 40.0 28.0 12.9 27.2
MS-2D-TAN (I3D) [67] X — FT — 56.6 36.2 — 62.1 45.5 28.3 — 42.0 33.6 22.1 -
Moment-DETR [20] X 236K FT 65.8 52.1 30.6 45.5 38.0 24.7 12.0 25.5
UMT' [30] X 236K FT 48.3 29.3
UnLoc-B [60] X 650K FT — 58.1 354 — — 48.0 29.7 — — — — -
MomentDiff [25] X — FT — 55.6 324 — — — — — 46.6 28.9 12.4 30.4
LGI [38] X FT 73.0 59.5 35.5 51.4 58.5 41.5 23.1 41.1
FlashVTG (SF+C) [6] X FT 60.1 38.0 53.7 41.8 24.7 37.6
BAM-DETR [19] X — FT 72.9 60.0 394 52.3 — — — — 56.7 41.5 26.8 39.3
UniVTG [27] X 42M FT 70.8 58.0 35.7 50.1 — — — — 514 35.0 17.4 33.6
QD-DETR (SF+C) [37] X FT 57.3 32.6
CG-DETR (SF+C) [36] X FT 70.4 58.4 36.3 50.1 54.4 39.5 234 374
TR-DETR (SF+C) [48] X — FT — 57.6 33.5 — — — — — — — — —
GVL (C3D) [53] X — FT — — — - — 48.9 27.2 46.4 459 34.6 — 325
InternVideo2” + CG-DETR [55] X 2.1IM FT 79.7 70.0 48.9 58.8
SG-DETR [10] X FT 71.1 52.8 60.7 46.4 33.9 424
MGSL-Net [29] X 150K FT — 64.0 41.0 — — 51.9 314 — 42.5 323 —
EaTR [15] X 150K FT — 68.5 449 - — 58.1 37.6 — — — — -
EMB (ELA) [14] X FT 79.7 69.2 51.4 62.2 73.7 58.7 40.7 56.2 63.3 52.5 37.0 48.4
BLIP-2 (frames only) [22] 4 129M FT - 433 32.6 - — 25.8 9.7 — — — — —
VideoChat2 [23] v 2M FT — — — — 55.5 347 177 389 — — — —
TimeChat [45] v 125K FT - 467 237 — - - - — | 2727 151 64 184
HawkEye [56] v 715K FT 725 58.3 288 493 | 559 34.7 179 39.1 - — - —
VtimeLLM [11] v 170K FT — — — — — — — — 26.8 14.4 6.1 18.0
ED-VTG v 136K FT 78.2 62.1 350 526 | 67.6 45.1 227 449 | 46.0 31.5 158 324
AOurs - HawkEye - - FT | 571 381 621 3371|1171 1041 481 581| - - - -
AOurs - VTimeLLM — - FT - - - - - - - - 1921 1711 971 1447

Table C.1. Extension of Table 3 in the main paper with a comprehensive list of task-specific specialist baselines. ED-VTG beats many
expert baselines, and significantly closes the gap between SOTA specialist models with MLLMs. TUMT uses video and audio as the input.

*Though InterVideo?2 is a generalist model, it fine-tunes CG-DETR [

extractor.

D. Pseudo-label Generation Pipeline

Since our proposed two-step cascaded grounding approach,
Enrich and Detect, requires enriched queries as ground
truths during training, we augment poorly worded or poten-
tially incomplete input queries of all training benchmarks
with additional context information using an open-source
and broadly capable captioning model, LLaVA OneVision
(OV) 72B [21]. First, we crop the input videos between
the annotated time intervals. Next, we input the original
query and the cropped video to the OV model and ask it
to enrich the description of the activities in the given seg-
ment while preserving the main focus of the original query.
The prompt used in this step is shown in Figure D.1. To
partially tackle the hallucination issue of large LLMs dur-
ing language generation, next we generate a few binary
choice questions from each enriched query using a text-only
LLaMA 3.1 8B model [7], and filter the samples using a
lower-sized OV 8B model, which is proficient at answering
yes/no questions. If all descriptions in the enriched query
are correct, we keep the sample; otherwise, we reiterate the
process. Notably, even with our well-versed query augmen-
tation pipeline, some enriched samples contain unimportant
information for grounding, which we tackle with the pro-
posed MIL training framework. During evaluation, we only

] head for grounding tasks, using the LLM only as a video feature

You are given a cropped video segment.
A brief description of the activity in this
segment is: {{Input Query}}

This activity description is written by a
human. Can you enrich the description of the
activities happening in this segment?

Make sure to preserve the meaning of the
original annotation. Enrich the query with
additional information. Moreover, keep the
enriched description brief, preferably only
one sentence.

Figure D.1. Prompt for query enrichment during the pseudo-
label generation using a captioning model, LLaVA OneVision
72B [21]. We feed the cropped video between the annotated time
interval along with the original query, and ask the model to enrich
the query with additional information while maintaining the orig-
inal focus of the query.

feed the original queries as input to ED-VTG, and the model
generates the enriched queries and perform grounding.

E. Example Instructions for Different Tasks

High-quality language instructions are essential for effec-
tive instruction tuning of LLMs across various downstream



tasks [24, 41, 54]. For each task, we manually write one
high-quality instruction as starting and generate variations
using GPT-4 [1]. Eventually, we manually refine the LLM-
generated instructions to obtain the final version. Based
on insights from M3IT [24] and TimeChat [45], we use
six high-quality instructions per task. During training, we
randomly pick one instruction for each sample. Table E.1
shows one example instruction for each task.

F. Error Analysis

Although ED-VTG learns impressive video temporal
grounding capability across many different benchmarks,
there are still various cases where the model fails to cor-
rectly localize the input query, especially for small and ob-
scured objects in long videos. Moreover, since ED-VTG
does not use the audio modality, acoustic expressions are
sometimes hard to localize. Figure F.1 shows two such er-
ror cases. In the first example, ED-VTG fails to recognize
where the person “laughs”, primarily due to minimal rele-
vant activities before laughter happens. As the face of the
person in this video is not fully visible throughout the video,
the model fails to detect such sudden and unprecedented
activity. However, with acoustic information, such activi-
ties would be easy to detect. In the second case, though
the query asks to localize where the “person cracks egg”,
ED-VTG produces an enriched query that contains an ad-
ditional action (pouring the egg in the glass), and conse-
quently grounds it to a longer interval. This is an example
where our enrich-and-detect paradigm fails, as although the
enriched query is grounded properly, this behavior is unde-
sired. However these cases are much less common than the
ones where enrichment improves the grounding, providing
overall - as we have demonstrated quantitively - net perfor-
mance benefit.

G. Hyper-parameter settings

Our hyper-parameter settings during the pre-training and
dataset-specific fine-tuning is provided in Tables G.1 and
G.2, respectively. To find the most optimal hyper-parameter
combinations for different tasks and datasets, we perform a
grid search on batch size, learning rate and loss weights,
and report the best configuration in Table G.2.

H. Dataset Details

This section provides additional details of our pre-training,
fine-tuning and evaluation datasets with an in-depth de-
scription of our pseudo-label generation pipeline.

H.1. Pre-training Datasets

DiDeMo: DiDeMo' [3] is a large-scale video temporal
grounding dataset featuring 10,464 unique videos, anno-
tated with natural language descriptions that highlight spe-
cific moments or events, including single-sentence sum-
maries and shorter moment descriptions. The dataset is
sourced from the Flickr Creative Commons dataset [51] and
encompasses a diverse array of topics such as outdoor ac-
tivities, sports, food preparation, DIY projects, travel des-
tinations, and animals. A notable limitation of DiDeMo is
that its interval annotations are made in 5-second windows,
which do not capture fine-grained activities. We utilize
DiDeMo for pre-training in single-query temporal ground-
ing (STG), where the model receives an input video along
with a query and is expected to output a single time interval.

QuerYD: QuerYD? [40], sourced from the YouDescribe
project [46], is a large-scale video grounding dataset de-
signed for moment retrieval and event localization. A dis-
tinctive feature of QuerYD is that each video includes two
audio tracks: the original audio and a high-quality spo-
ken description of the visual content. We utilize the orig-
inal audio to generate automatic speech recognition (ASR)
transcripts, which are then used as input for the large lan-
guage model (LLM) along with task instructions. We use
this dataset in the STG task format. However, since some
samples in QuerYD contain single timepoint annotations in-
stead of time intervals, we introduce a (point) token to the
LLM vocabulary. During pre-training, if a (point) token is
present in the ground truth, we mask out the window logit in
the decoder and set the generalized intersection over union
(gloU) loss to zero.

COIN: The COIN® dataset [50] is a large-scale collec-
tion designed for comprehensive procedural activity recog-
nition. It comprises over 11,800 videos covering 180 dif-
ferent tasks, which are organized into 12 distinct domains
such as “Sports”, “Leisure”, “Home Improvement”, “Food
& Drinks” etc. Each video is meticulously annotated with
step-by-step instructions, providing a detailed breakdown
of the procedural activities depicted. This structure allows
for the analysis of both high-level task understanding and
fine-grained action recognition. The dataset is notable for
its diversity, featuring videos sourced from a wide range of
environments and cultural contexts, which enhances its ap-
plicability to real-world scenarios. Most important to our
application, COIN includes temporal annotations that spec-
ify the start and end times of each procedural step, facilitat-
ing precise temporal action localization. We utilize COIN
in the video paragraph grounding (VPG) task format, where
we input multiple step descriptions as queries, and ask the

Ihttps://github.com/LisaAnne/LocalizingMoments
2https://www.robots.ox.ac.uk/~vgg/data/queryd/
3https://github.com/coin-dataset/annotations
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Task Example Instructions

e Please look into the given video and localize the textual query: (Input Query). If the provided query is explicit,
STG | directly localize it. Otherwise, generate an enriched version which provides more information about the desired time
window without changing the main focus, and then localize it.

o Carefully review the video and textual queries provided. Your goal is to associate each query with a specific time in-
terval in the video. If a query is clear-cut, directly localize it. For less explicit queries, develop an enhanced version that
furnishes more details about the desired time window without changing the core focus, and then localize the enhanced
query. Process the queries in the order they appear. The queries are: (Input Queries).

VPG

e Analyze the provided video and the question: (Input Question) carefully. Your task is to identify the specific time
interval in the video where the question can be accurately answered. If the question is straightforward and easily
QG | grounded, directly localize it in the video. However, if the question requires additional context or clarification, generate
an enriched version that provides more information without altering its primary focus, and then determine the desired
time interval.

e Carefully look into the given video and the textual queries. Your job is to localize the textual queries in the video.
Some of the queries may not be groundable in the input video, in that case, mention it. If a query is groundable and
AG | explicit, directly localize it. Otherwise, if the query is groundable, but lacks information, output an enriched version of
the query to provide more context about the desired time window without changing the main focus, and then localize
the query. Process the queries in the same order as listed in this instruction. The queries are: {Input Queries).

Table E.1. Examples of instructions for different tasks used by ED-VTG. Each instruction provides the model two options: (%) to perform
grounding directly when the query is simple and clear, and (%) to perform grounding in the enrich and detect paradigm, where the model
first produces an enriched query with additional information about the desired time window, and then localize it. We highlight the task-
specific parts in blue for every instruction.

[ Query: person starts laughing. ]

[ I I ]
0.0 27.0 Ground Truth 33.6 15.8

[
0.0 ED-VTG 8.0 15.8

Enriched query by ED-VTG: a person in a black shirt is sitting on a chair, holding a glass and laughing. J

[ Query: he cracked egg. ]

I [ ]
27.8 Ground Truth 34.5 82.4

[ [
26.2 ED-VTG 68.2 82.4

o o
o

o

(Enriched query by ED-VTG: the person is cracking an egg and pouring it on a glass on the counter in kitchen. }

Figure F.1. Limitations of our method. In this figure, we show two error cases where ED-VTG fails to accurately ground the input
queries. The two samples are taken from Charades-STA [8] and TACoS [44], respectively. In the first case, the model completely fails
to recognize the correct interval. In the second case, ED-VTG produces an enriched query that contains an extra action compared to the
original query (pouring the egg in a glass), which results in a longer temporal interval prediction which is incorrect.



Hyper-parameters Notation Value

Vision Encoder

Frame encoder - EVA-CLIP [49]

Image Q-Former num tokens — 32

Image Q-Former hidden layers - 2

Video Q-Former num tokens — 32

Video Q-Former hidden layers — 2

Video Q-Former window size — 32

Video Q-Former stride — 32
Interval Decoder

# Transformer layers — 2

Transformer layer num heads — 12

Transformer layer hidden dim — 768

MLP dim — 768 - 256 - 128 - 2

Pre-training

Batch size — 256

Epochs — 40

Number of frames — 96

Frame resolution — 224 x 224

Max. length of text — 2048

Loss weights ALMs AL1, AgloU 2,1,1

Optimizer - AdamW [32]

LoRA rank — 32

Peak LR - Se-5

‘Warmup - Linear (first 8 epochs)

LR decay — Cosine [31]

Start LR - le-5

End LR — le-6

Num workers - 6

Betas in AdamW (B1, B2) (0.9, 0.98)

Eps in AdamW — le-8

Weight decay - 0.05

Table G.1. Pre-training hyper-parameter details of ED-VTG.

model to localize each input query.

HiREST: The Hierarchical Retrieval and Step-captioning
(HiREST)* dataset [63] supports multiple related video-text
tasks within an instructional video corpus, including (1)
video retrieval, (2) moment retrieval, (3) moment segmenta-
tion, and (4) step captioning. HiREST contains 1.1K high-
quality, human-annotated moment spans that are relevant
to text queries, making it an excellent resource for video
grounding. We employ HiREST in both the single-query
temporal grounding (STG) and video paragraph grounding
(VPG) task formats.

VITT: The Video Timeline Tags (VITT) [13] dataset pro-
vides timestamped activity descriptions for a wide range
of instructional videos, focusing on hands-on skills such
as cooking, car maintenance, and home repairs. It com-
prises approximately 8,000 videos, each averaging 7.1 seg-
ments, with each segment accompanied by a concise free-
text description. While VITT is primarily used for dense
video captioning, we adapt the dataset to the video para-
graph grounding (VPG) format, where segment descrip-
tions are inputted, and the system is tasked with localiz-
ing them within the video. Similar to the QuerYD dataset,

4https://github.com/j-min/HiREST
Shttps://github.com/google-research-datasets/
Video-Timeline-Tags-ViTT

samples in VITT include single timepoint annotations, for
which we employ a (point) token and back-propagate using
only the L1 objective.

YTTemporal: YTTemporal-1B [64] comprises 18 million
narrated videos sourced from YouTube, from which we uti-
lize the same subset as TimeChat [45]. In our approach,
we employ YTTemporal in the video paragraph ground-
ing (VPG) task setup, where the speech content from the
narrations is inputted, and the model is tasked with pre-
dicting the start and end timestamps based on the video’s
visual signals. Due to the often poorly worded and in-
complete nature of the narrations, this dataset serves as a
weakly-supervised annotation source. The enriched queries
significantly aid ED-VTG in achieving accurate ground-
ing. Following the methodology of Vid2Seq [601], we use
Whisper-timestamped [33, 43] to automatically transcribe
the speech, which is then used as input queries.

CrossTask: The CrossTask® [69] dataset is a valuable re-
source for learning and evaluating models on cross-domain
task understanding and procedural activity recognition. It
consists of approximately 4,800 videos spanning 18 pri-
mary tasks and 65 related tasks, such as “Make Pancakes”,
“Change Car Tire” and “Assemble Shelter” each sourced
from diverse domains. We use a subset of CrossTask con-
taining 2.7K videos for article grounding (AG). Since this
dataset does not contain negative queries, we generate syn-
thetic negatives using the LLaMA 3.1 8B [7] model. We
provide the model with video descriptions (dense captions
and ASR) and ask it to generate negative queries that re-
semble the video activities but do not actually occur in the
video. Afterwards, we filter the generated negative queries
using multimodal LLaVA OneVision 72B [21], and man-
ually verify a small portion (5%) of the filtered negative
queries for quality assurance.

VideoCC: VideoCC’ [39] is a large-scale dataset designed
for video captioning and temporal video grounding, fea-
turing 6.3 million video clips accompanied by 974,247
temporally-aligned captions. For our purposes, we utilize
a smaller subset of 45,000 caption-interval pairs within the
single-query temporal grounding (STG) task setup. The
videos in this dataset span a wide array of categories, such
as sports, cooking, travel, and more, offering a diverse range
of scenarios for model training and evaluation. This diver-
sity makes VideoCC an invaluable resource for developing
models that can effectively understand and describe video
content across various contexts. Notably, since we use only
a subset of YTTemporal and VideoCC, we will easily be
able to scale up our pre-training in future.

Shttps://github.com/DmZhukov/CrossTask
Thttps://github.com/google-research-datasets/
videoCC-data
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Fine-tuning Hyper-parameter Details
Task | Dataset Batch Epochs Warmup #Frames Arm A1 Agiou Peak LR Start LR End LR
Charades-STA [&] 32 120 24 96 2 1 1 3e-5 le-5 le-5
STG | ActivityNet-Captions [18] | 32 30 6 144 1 1 1 3e-5 le-5 le-5
TACoS [44] 32 120 24 144 4 1 1 3e-5 le-5 le-5
Charades-CD-OOD [62] 32 120 24 96 2 1 1 3e-5 le-5 le-5
STG ActivityNet-Captions [18] | 32 30 6 144 3 1 1 3e-5 le-5 le-5
TACoS [44] 32 120 24 144 4 1 1 3e-5 le-5 le-5
YouCook?2 [68] 32 120 24 144 1 1 1 3e-5 le-5 le-5
AG | HT-Step [2] | 32 120 24 144 21 1 3e-5 le-5 le-5

Table G.2. Fine-tuning hyper-parameter details on different datasets. LR denotes learning rate, Ar.m, A1 and Agrou denotes weights

for LM, L1 and gloU objectives, respectively. Since the NEXxT-GQA [

] dataset has no training split, no fine-tuning is performed on

NExT-GQA, we report only zero-shot performance. All other hyper-parameters, which are not mentioned in this table, are kept the same

as the pre-training setup as listed in Table G.1.

H.2. Fine-tuning and Evaluation Datasets

Charades-STA: Charades-STAS [8] is a specialized dataset
designed for the task of temporal activity localization in
videos, particularly focusing on the alignment of textual
descriptions with specific video segments. Charades-STA
contains 9,848 videos capturing daily indoor activities and
16,128 human-tagged query texts. Following previous
works [25, 27, 37, 48], we use the train set containing
12,408 samples for fine-tuning while the test set with 3,720
samples for evaluation. We report the single-query temporal
grounding (STG) results on Charades-STA.

Charades-CD-OOD: Charades-CD-OOD’ [62] is a reor-
ganized version of the Charades-STA dataset, specifically
designed to evaluate models on their ability to generalize to
out-of-distribution (OOD) scenarios in the context of para-
graph grounding, which involves testing models on novel
combinations of actions and objects that were not seen dur-
ing training, thereby assessing their ability to extrapolate
learned knowledge to new contexts. The dataset is di-
vided into train/val/test ood sets of 4,564/333/1,440 video-
paragraph pairs, respectively. The average video duration
in Charades-CD-OOD is 30.60 seconds, and the average
paragraph length is 2.41 sentences. We report the video
paragraph grounding (VPG) performance of ED-VTG on
Charades-CD-OOD.

ActivityNet-Captions: ActivityNet-Captions'®  [18]
dataset is a comprehensive resource designed for dense
video captioning and temporal localization tasks, derived
from the original ActivityNet [18] dataset. ActivityNet-
Captions features a diverse array of open-domain content,
comprising 14,926 distinct videos and 19,811 localized

8https://github.com/jiyanggao/TALL

Shttps://github.com/yytzsy/grounding_changing_
distribution/tree/main/Charades-CD

lohttp://activityfnet.orq/download.html

video-paragraph pairs. On average, each video is approxi-
mately 117.63 seconds long, and each paragraph consists of
about 3.63 sentences, providing detailed narrative descrip-
tions of the video content. The dataset is structured into
three subsets: training, val_1, and val_2, containing 10,009,
4,917, and 4,885 video-paragraph pairs, respectively.
Consistent with prior research [4, 5, 11, 16, 28, 45, 57], we
use the val_2 for evaluation. We report both STG and VPG
performance of ED-VTG on ActivityNet-Captions.

TACoS: The TACoS'' [44] dataset is a specialized col-
lection derived from the MPII Cooking Composite Activ-
ities video corpus [47], focusing on cooking activities and
kitchen scenarios. It comprises 127 videos, each accom-
panied by multiple paragraphs that describe the actions at
varying levels of detail. Specifically, the dataset includes
1,107 video-paragraph pairs for training, 418 for validation,
and 380 for testing. On average, the videos are 224.34 sec-
onds long, and each paragraph contains approximately 8.75
sentences, providing rich and detailed descriptions of the
cooking processes. The dataset’s focus on cooking activities
makes it an ideal benchmark for evaluating models that aim
to comprehend and describe complex procedural tasks in a
structured environment. We report the results on TACoS for
the STG and VPG tasks.

YouCook2: The YouCook2'? [68] dataset consists of 2,000
cooking videos sourced from YouTube, capturing a wide
variety of cooking styles and cuisines from around the
world. These videos are segmented into 15,400 clips, each
annotated with detailed descriptions that provide step-by-
step instructions for preparing various dishes. On average,
each video is approximately 5.19 minutes long, and the

Uhttps : / / www . mpi - inf . mpg . de / departments /
computer - vision-and-machine - learning/research/
vision-and-language/tacos-multi-level-corpus

2nttp://youcook2.eecs.umich.edu/download
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dataset covers 89 different recipe types, offering a rich di-
versity of cooking scenarios. YouCook2 has 1095 and 415
ground truth video-paragraph pairs for train and evaluate,
respectively. We report VPG performance of ED-VTG on
YouCook?2.

NExXT-GQA: The NExT-GQA!? [59] dataset is a manually
annotated video question grounding dataset, where each
question-answer pair is accompanied by a temporal segment
annotation serving as evidence. Built upon the NExT-QA
[58] dataset, NExT-GQA was created by adding 10.5K tem-
poral labels - specifying start and end timestamps - to the
QA pairs in the validation and test sets. These labels were
carefully annotated and verified as crucial for understand-
ing the questions and identifying the correct answers. Since
NExT-GQA does not contain a training split, we evaluate
our model’s performance on zero-shot question grounding
(QG) using this dataset.

HT-Step: HT-Step'* [2] is a large-scale dataset containing
temporal annotations of instructional article steps in cook-
ing videos. It includes 116K segment-level annotations
over 20K narrated videos (approximately 2.1k hours) of the
HowTo100M [35] dataset. Each annotation provides a tem-
poral interval and a categorical step label from a taxonomy
of 4,958 unique steps automatically mined from wikiHow
articles [17], which include rich descriptions of each step.
Since HTStep releases the negative queries, we report arti-
cle grounding (AG) performance on this dataset.
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