
Appendix
A. Broader related work
Self-supervised learning (SSL) of visual representations
has lately been of great interest to the scientific commu-
nity, opening up the possibility of learning powerful mod-
els without labeled data [1, 10]. SSL requires an appro-
priate pretext task which replaces a data-defined objective,
and over the years, a plethora of such tasks have been pro-
posed [28, 32, 44, 71], with Joint-Embedding Architectures
(JEA) [15, 16, 18–21, 34, 36, 45, 69, 72], and Masked image
modeling (MIM) [59, 60] gaining the most prominence in
recent years.

Limitations of JEA models have been extensively cov-
ered by recent literature. JEA models rely on hand-crafted
data augmentations [56], and their learned invariance to data
perturbations can adversely affect the quality of representa-
tions [17, 41, 51, 63]. Moreover, JEA pretraining implicitly
assumes a similar distribution of its pretraining and down-
stream task data [4], causing a need for additional dataset
curation [45]. Therefore, development of SSL paradigms
alternative to JEAs, including MIM, is an active line of re-
search [5, 31, 58, 68].

Comparisons of Masked Image Modeling and Joint-
Embedding Architectures have been the focus of sev-
eral works, which tried to understand the differences and
combine the advantages of both paradigms [9, 39, 47, 70].
The authors of [39, 70] frame MIM as a JEA that learns
invariance to image occlusions, but find its representation to
be less expressive than in other JEAs. A theoretical study
of learning by reconstruction, conducted in [9], shows that
data features required for reproducing pixels are misaligned
with those needed for high-level perception. As a solu-
tion, multiple works propose shifting the prediction target
from low-level pixels to higher-level image features, such
as Histograms of Oriented Gradients [62] or latent represen-
tations [5, 50, 66], akin to the JEA objective. Finally, [47]
thoroughly compare the properties of MIM and JEA-trained
models including, similarly to us, the attention mechanisms
of their patch tokens. They find that whereas JEAs form
global and homogeneous attention maps, the attention of
MIM patch tokens is more localized. Furthermore, [38, 65]
show that MIM-pretrained transformers produce attention
patterns that capture diverse image aspects, useful for tasks
which require spatial understanding of images. Our work sig-
nificantly extends these studies – we analyze the [cls] and
patch representations of models trained with both paradigms
and provide a detailed description of the information flow
within them. We find that the attention mechanism emergent
in MIM models imposes limitations that prevent these mod-

els from realizing their full potential in high-level perception
tasks. Although this consequence of masked pretraining
has previously been hinted at in the language models lit-
erature [30], to the best of our knowledge, it has not yet
been discussed in the context of computer vision. While
[30] address this with a modified pretraining scheme, we
present Selective Aggregation as a lightweight solution for
improving existing MIM representations without requiring
architectural changes or additional pretraining.

B. Detailed experimental setup
In this section, we describe our experimental methodology:
our choice of pretrained models, the details and hyperpa-
rameters of evaluating their representations, as well as the
codebase used for the experiments.

B.1. Overview of the analyzed vision transformers
Our study aims to verify whether Selective Aggregation of
patch token representations with AbMILP can yield form
better representations than those of the [cls] tokens.

For this purpose, we analyze various vision transformer
architectures that were pretrained with several MIM and JEA
approaches, using the parameters shared by the authors of
the respective methods. This has two advantages:
• Using the existing parameters significantly reduces the

computational resources required for our study.
• Our study provides insights about the very same sets of

parameters that are described in their respective literature
and used by the wider research community.

For a fair evaluation, we use the parameters of the models
that were pretrained on the ImageNet-1k dataset [54]. All
of the explored model parameters are compatible with the
implementations of the MAE [37] or SimMIM [64] vision
transformers. Following the MAE and DINO implementa-
tions, when using ViT-S and ViT-B, we split the image into a
14× 14 grid of patches of size 16× 16. When using ViT-H,
the we split the image into 16× 16 patches of size 14× 14.

The only analyzed models that are not publicly available
but were trained by us are the ViT-S pretrained with the
MAE and the fine-tuned ViT-S/B/L variants of the MAE.
To prepare these models, we used the MAE pretraining and
fine-tuning codebase and hyperparameters [37]. Before fine-
tuning, we initialize the model with the pretrained MAE
parameters as shared by the authors and use the [cls]
token representation as input to the classifier.

B.2. Representation evaluation details
In our evaluation of ViT representations in terms of classi-
fication accuracy on ImageNet-1k and other large datasets
(NUS-WIDE, COCO, Food-101), we follow the MAE lin-
ear probing protocol [37]: we augment the images only by
random cropping, use the batch size of 16,384, and train the
classifier head for 90 epochs (50 in the case of ViT-Large



and Huge) with the LARS optimizer [33], the base learning
rate of 0.1 with cosine decay and 10 epochs of warmup,
optimizer momentum of 0.9, and no weight decay. For
smaller datasets such as CUB, Stanford Cars, OxfordIIIPets,
and ImageNet-1%, we follow a similar linear probing setup
but train using SGD with a batch size of 1024. We report
the results averaged over 3 random seeds. When using the
AbMILP Selective Aggregation, we train it alongside the
classifier head.

These evaluations are performed on a single node
equipped with 4 NVIDIA-GH200 GPUs. Due to the memory
constraints of this setup, we obtain the effective batch size
of 16,384 by aggregating gradients from two forward passes
with half of that batch size.

B.3. Codebase
Our code is based on the official MAE codebase [37], writ-
ten in PyTorch [49], and available at github.com/gmum/
beyond_cls. We include scripts required for the analysis
of the attention mechanism in ViTs, as well as linear evalua-
tion of their representations extended with AbMILP [43].

C. Additional experimental results
C.1. Analysis of information flow in self-supervised

ViT architectures
This section contains the full details and experimental results
of the attention mechanism in vision transformers, analyzed
in Sec. 4. In the main manuscript, we include the analy-
sis conducted on ViT-B, whereas in this section, we also
provide the results of ViT-S and ViT-L architectures in Fig-
ures 10 to 13, For completeness, we re-include in them the
pictograms describing each metric and the ViT-B results.
We denote the contents of Figures 10 to 13 in Tab. 4. Due
to the size of the figures, include them at the end of this
supplementary material.

To complement the analysis, we report the average en-
tropy of attention from the [cls] token to patch tokens
across all Transformer blocks in Tab. 3. These results extend
our findings beyond MAE and confirm that MIM models
tend to distribute [cls] attention more uniformly across
patch tokens compared to Joint-Embedding Architectures
(JEAs). Notably, contemporary MIM architectures like I-
JEPA and CAPI omit the [cls] token altogether, using
average pooling over patch tokens instead. This results in an
effective attention distribution that is equivalent to uniform
and thus exhibits entropy values near the theoretical upper
bound.

Detailed methodology. In our analysis, we aim to char-
acterize the attention patterns resulting from MIM and JEA
pretraining. Therefore, for both [cls] and patch tokens,
we measure the attention of tokens to themselves (to see

Type Masked Image Modeling JEA
Model MAE [37] SimMIM [64] BEIT-v2 [50] I-JEPA [5]‡ CAPI [27]‡ DINO [16]

Aggr. entropy 5.03 4.96 4.89 5.28 5.28 4.70
‡ no [cls] token – uniform aggr.

Table 3. Patch aggregation entropy averaged across Transformer
blocks in MIM models (we include DINO as a JEA representative
for reference). MIMs aggregate patches more uniformly, motivating
Selective Aggregation.

if tokens recycle their own information), and the entropy
of attention to patch tokens (to see how information flows
between the tokens).

The entropy of an i-th token’s attention to patch tokens
(i.e. the ai,1:N vector) is given by the Shannon entropy of its
normalized values:

H(a′i) = −
N∑
j=1

a′i,j · log(a′i,j), (6)

where a′i,1:N =
ai,1:N

N∑
j=1

ai,j

. We measure these values for each

self-attention head in each ViT block and report the aver-
age results per block. The inference is performed on the
ImageNet-1k validation dataset (50,000 images).

To fairly compare Masked Image Modeling and Joint-
Embedding paradigms, we analyze the ViT-B/16 models
pretrained with MAE [37], DINO [16], MoCo-v3 [21], and
iBOT [72], which represent prominent SSL approaches.8

We use publicly available pretrained parameters provided
by their respective authors. To examine whether optimizing
for a global representation alters the attention behavior of
MIM, we analyze an MAE model fine-tuned for ImageNet-
1k classification using the [cls] token.

Analyzed models. As discussed in Appendix B.1, when-
ever possible, for each analyzed method, we use the
ImageNet-1k pretrained model parameters officially released
by their respective authors. The only exception to this is the
MAE trained with ViT-S, which we trained ourselves, and
the finetuned MAE (MAE-FT), which we finetuned our-
selves for ImageNet-1k classification on top of the [cls]
token features. Due to the lack of available ViT-L parameters
of MoCo-v3 [21] and DINO [16], we omit them from the
analysis of this architecture. However, given that the three
JEA approaches behave similarly for each property analyzed
in ViT-S and ViT-B architectures, we believe that the avail-
able ViT-L iBOT [72] variant sufficiently represents JEA.
Similarly, we do not conduct this comparison with the ViT-H
architecture, due to the lack of publicly available parameters
of ViT-H trained with JEA to compare with.

8While iBOT optimizes a hybrid of JEA and MIM objectives, its per-
formance gains are largely attributed to the JEA component [72], which is
why we categorize it as such.



Metric ViT-B results ViT-S/B/L results
(manuscript) (Appendix)

[cls]-[cls] attention Fig. 3 Fig. 10
[cls]-patch entropy Fig. 4 Fig. 11
patch-patch attention Fig. 5 Fig. 12
patch-patch entropy Fig. 6 Fig. 13

Table 4. A reference of Figures depicting the analysis of the atten-
tion mechanism and their extended counterparts in the Appendix.

Discussion. We are interested in the behavior of the ViT
attention mechanism emergent in the MAE and JEA ap-
proaches, especially in the deep ViT blocks which form
higher-level image representations [67]. Across the three
ViT architectures analyzed, we observe several consistent
trends, more generally discussed in Section 4 and summa-
rized below:
• The [cls] token of pretrained and fine-tuned MAE as-

signs a large portion of attention (around 40-50%) to its
own representation.

• The entropy of attention between the [cls] and patch
tokens is much higher in MAE than in the rest of the
models, indicating that it aggregates the information from
a larger number of patch tokens. Fine-tuning of the MAE
decreases this value to the levels observed in JEA models,
increasing the selectiveness of attention.

• The attention of MAE patch tokens to themselves (rela-
tive to all patch tokens) is higher than in other models,
indicating they are more likely to preserve their own, di-
verse information [47]. Fine-tuning of the MAE results
in lowering this metric to the level observed in the JEA
models. MAE patches also attend to to other patches with
lower entropy than in JEAs and this does not change after
fine-tuning.

C.2. Designing the token aggregation mechanism
In this section, we discuss different design choices for the
token aggregation function, which uses either various vari-
ants of AbMILP [43], or other, non-trainable substitutes.
Unless sepcified otherwise, all experiments reported in this
section are conducted with the ViT-B model pretrained with
the MAE [37].

Ablation study of AbMILP variants. We explore several
designs of the model used by AbMILP to predict the scores
for patch aggregation and report their performance in Tab. 5.

The original AbMILP architecture [43] uses a 2-layer
MLP with the Tanh activation function. MAE patch tokens
aggregated by this model achieve an accuracy of 68.7%. Al-
though this is higher than the [cls] token representation,
we found that the training process is unstable and replaced

Activation AbMILP MLP depth
function 1† 2 3 4

ReLU 71.6
†linear model
w/o activation

71.7 71.5 71.6
GeLU 71.6 71.6 71.5
Tanh 68.7 66.7 66.7

Table 5. Comparison of ImageNet-1k classification accuracy of
the MAE representation aggregated by different variants of Ab-
MILP [43]. Deeper MLPs do not boost performance.

the Tanh activation with ReLU. This led to more stable train-
ing and an improvement in accuracy by almost 3 pp. Sur-
prisingly, reducing the MLP to a single linear layer achieves
almost the same results. Due to the simplicity and perfor-
mance of this design, we adopt it in our main experiments.
As seen in Sec. 5.1, the effectiveness of this approach gener-
alizes to aggregating representations of MIM models other
than the MAE.

We note that AbMILP is just one of several Multiple-
Instance Learning methods that can be adopted to aggregate
patch token representations. As an alternative, we explore
the Self-Attention AbMILP [26] where, prior to computing
the aggregation scores and the aggregated representation,
tokens are processed by an additional trainable self-attention
head. This approach achieves accuracy much closer to that of
the JEA-trained approaches – 74.83%. This indicates an even
larger richness of information stored in the representation
space of Masked models, which requires more complex task-
specific heads in order to be fully exploited. However, we
found the training of this model to be unstable with the
LARS optimizer [33], and were only able to train it using
SGD. Moreover, a classification head that internally uses
trainable self-attention to pre-process the classifier input is
incomparable to a simple linear probe. For these reasons, we
do not include this approach in our main experiments.

Non-trainable token aggregation. Apart from the
AbMILP-based aggregation, we explore several alternative
token aggregation functions that are not trained along with
the classifier model. We discuss these approaches and their
properties below and report their representations’ average
accuracies and entropies of the aggregation vectors in Tab. 6.
To measure if different token aggregation approaches se-
lect the same patch tokens, in Fig. 7, we report the average
Kullback-Leibler Divergence between token selection vec-
tors produced by each method. Finally, we visualize the
example token selection vectors in Fig. 9.

• Average MAE [cls] token attention – the average
attention between the [cls] and patch tokens, produced
by the MSA of the final MAE ViT block. As evidenced by
the high entropy, this approach aggregates many patches,



achieving quality similar to that of the regular [cls]
representation.

• Lowest-entropy MAE [cls] token attention – the at-
tention map between the [cls] and patch tokens pro-
duced by the MSA of the final MAE ViT block, which has
the lowest entropy. This approach achieves low aggrega-
tion entropy, but due to the diversity of image fragments
attended by different self-attention heads [47], the attended
fragment of an image is not guaranteed to contain the ob-
ject of interest.

• MAE central patch token attention – the average atten-
tion between the token of the central patch in the image
and other patches. This approach can distinguish the to-
kens of the object of interest as long as it is depicted on
the central image patch, which is not always the case. As
evidenced by the high KLD between the Lowest-entropy
MAE [cls] token attention and MAE central patch to-
ken attention, these two approaches tend to have a low
agreement in terms of which tokens to select, suggesting
their high volatility.

• Average DINO [cls] token attention – the average
attention between the [cls] and patch tokens, produced
by the MSA of the final DINO ViT block. As observed
by [16], DINO attention maps are exceptionally good at
capturing the main objects of interest in the images. MAE
patch tokens selected with this approach form representa-
tions superior to the [cls] token, but an obvious draw-
back of this approach is the reliance on an externally pre-
trained model. As seen in Fig. 7, this selects tokens most
similar to the AbMILP-based token aggregation.

Token aggregation approach Accuracy Entropy

Average MAE [cls] token attention 67.8 5.14
Lowest-entropy MAE [cls] token attention 66.3 4.77

MAE central patch token attention 65.2 4.70
Average DINO [cls] token attention 70.9 4.89

AbMILP 71.6 4.80

Table 6. Evaluation of different token aggregation approaches in
terms of classification accuracy of their representations, and entropy
of the aggregation vectors they produce.

Most of the above approaches select the MAE patch
tokens with an entropy close to that observed in the JEA
[cls] token. However, except for the attention maps gener-
ated by DINO and AbMILP, we did not find an approach that
would reliably select patch tokens to form a representation of
better quality than the [cls] token. Finding such tokens in
an unsupervised manner is an interesting direction for future
work.

Selective Aggregation and Attentive Probing Attentive
Probing (AP) [22] has been proposed as an alternative to
naive feature aggregation in ViTs. Similarly to our Selec-

a) b) c) d) e)

a) Average MAE [cls]
token attention

b) Lowest-entropy MAE
[cls] token attention

c) MAE central patch
token attention

d) Average DINO [cls]
token attention

e) AbMILP
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Figure 7. Mean KLD between aggregation vectors produced by
different token aggregation techniques.

tive Aggregation, AP learns to emphasize the most relevant
patch tokens while keeping the encoder parameters frozen.
However, AP differs from our approach in a key way: it
does not only learn to aggregate tokens, but also transforms
them with a cross-attention layer into a new representation
space. potentially more suitable for the downstream task [9].
In contrast, AbMILP is designed to isolate the aggregation
process while preserving the original ViT representations.

We compare AP and AbMILP across multiple MIM mod-
els in terms of ImageNet-1k classification and report the
results in Tab. 7. Since AP typically uses a 12-head self-
attention mechanism, we additionally evaluate a reduced
variant with a single attention head (without reducing the
representation dimensionality) to better compare with the
capacity of AbMILP (which predicts a single set of repre-
sentation aggregation weights). As expected, the full AP
model achieves the best results, benefiting from its greater ex-
pressive power. However, despite AP’s significantly higher
parameter and compute cost, reducing it to a single head
brings its performance in line with AbMILP. This result is
somewhat surprising and suggests that AP’s strength may
come from ensembling multiple Selective Aggregation pat-
terns rather than from the learned transformation. Exploring
this insight to develop more efficient Selective Aggregation
strategies is a promising direction for future work.

Encoder Aggregation method
Initialization ViT type AbMILP AP (1 head) AP (12 heads)

MAE [37] ViT-S 54.4 53.6 63.9
MAE [37] ViT-B 71.6 71.4 75.4
MAE [37] ViT-L 77.4 77.6 79.7
MAE [37] ViT-H 78.1 78.3 80.0

BEIT-v2 [50] ViT-B 80.9 81.0 81.8
I-JEPA [5] ViT-H 79.2 79.5 79.7
CAPI [27] ViT-L 82.4 81.6 82.7

Table 7. Comparison of AbMILP [43] and Attentive Probing
(AP) [22] aggregation schemes. AbMILP and the single-head
cross-attention AP perform comparably.



Encoder Localization based on
Source ViT [cls] attention map Selective Aggregation map

MAE [37] ViT-B 53.3 59.4
BEIT-v2 [50] ViT-B 44.3 65.1

Table 8. Object localization capabilities of the [cls] attention
and Selective Aggregation weights, measured in terms of MaxBox-
AccV2 [24] on the ImageNet validation dataset.

C.3. Using Selective Aggregation for object local-
ization.

While global representations, which are the focus of this
paper, are not generally suitable for dense prediction tasks,
their attention maps can be used as a means to localize
the object of interest in the image [16]. Because Selective
Aggregation highlights the most relevant tokens, it can be
used in a similar manner. We evaluate this capability of
Selective Aggregation with the MAE and BEIT-v2 models,
comparing it to their [cls] attention maps. We measure
the localization quality in terms of MaxBoxAccV2 [24, 52]
on the ImageNet validation dataset. We report the results
in Tab. 8, and visualize the example results in Fig. 8. Our
results indicate that the more focused Selective Aggregation
localizes the objects of interest more accurately.

D. Future research directions

Our results indicate that lack of global representation aggre-
gation is inherent to vision transformers trained with Masked
Image Modeling. In this section, we summarize several po-
tential research directions for better understanding this issue.

Unsupervised discovery of relevant tokens. We have
showed that a shallow AbMILP [43] is sufficient for recog-
nizing the patch tokens of MIM models that are relevant to
form global image representations. However, in each MIM
model, we learn that function together with the classifier
dedicated to downstream tasks. Understanding what makes
a patch token relevant for global representation and finding
such tokens in an unsupervised manner is a natural further
direction.

Scaling Selective Aggregation. Our implementation uses
the minimal version of the aggregation score prediction
model. In our comparison with Attentive Probing, we show
that it succeeds not necessarily due to further processing of
representations, but rather due to an ensemble of multiple
self-attention heads. A full study of the effectiveness of ver-
tical (more complex transformations) and horizontal (larger
ensemble of aggregation functions) scaling of Selective Ag-
gregation would be very beneficial for determining the most
efficient MIM adaptation protocol.

Aggregation of internal ViT representations. Currently,
Selective Aggregation acts only act on patch representations
of the final ViT block. While this approach improves the
MIM representations, we note that it does not interfere in
any way with their internal information flow. However, as
shown in Fig. 4, the [cls] token of JEAs aggregates patch
information increasingly selectively throughout the several
final model blocks. We hypothesize that similarly aggregat-
ing MIM representations within internal ViT blocks, either
via additional training objectives or post-pretraining modifi-
cations, could yield further improvements in their quality.



Figure 8. Example localization results of the MAE [cls] attention and Selective Aggregation weights. Blue: ground-truth. Red: bounding
box predicted from the [cls] attention map. Green: bounding box predicted from the Selective Aggregation scores. Selective Aggregation
locates objects with better accuracy (see Tab. 8).



Input image Average MAE [cls]
token attention

Lowest-entropy MAE
[cls] token attention

MAE central patch
token attention

Average DINO [cls]
token attention AbMILP

Figure 9. Example token aggregation scores produced by different approaches denoted in columns. The average [cls] attention of the
MAE aggregates the patches too uniformly. The [cls] attention with lowest entropy and the attention of the central patch have low entropy,
but are not guaranteed to capture the object of interest in the image. Finally, the DINO [cls] attention maps and aggregation vectors
produced by AbMILP reliably identify the most crucial patches for forming high-level global image representations.
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Figure 10. Extended version of Figure 3. Attention of the [cls] token to itself is much higher in both pretrained and finetuned MAE,
than in the JEA ViTs. As opposed to JEA, where the [cls] tokens gather a large amount of information from the patch tokens, the MAE
[cls] token primarily recycles its own representation.
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Figure 11. Extended version of Figure 4. Entropy of attention between the [cls] and patch tokens. In MAE, its value reaches almost
the maximal possible level, In other models, it decreases in the deeper model blocks, indicating that the [cls] token attends to different
patches in a more selective manner. Fine-tuning of MAE decreases this entropy. indicating that selective attention to patch tokens is crucial
for good perception.
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Figure 12. Extended version of Figure 5. Attention of the patch tokens to themselves, relative to the total attention assigned to all patch
tokens. In the latter MAE blocks, patch tokens seem to assign the largest amount of relative attention to themselves, compared to the tokens
of JEA.
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Figure 13. Extended version of Figure 6. Entropy of attention of patch tokens to patch tokens. In MAE, the patch tokens attend to other
patches with lower entropy than in JEA, suggesting that they form a representation of their local image fragments.
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