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Supplementary Material

In this supplementary material, we provide additional
details and various ablation studies of the main contribu-
tions of our work. Concretely. Sec. A describes the im-
plementation details of our proposed SDST architecture
and of our tested evaluation setups. Sec. B presents a de-
tailed description of the datasets used in our experiments:
QVHighlights, TACoS, and Charades-STA. Sec. C expands
on the objective functions used by SDST, covering the
losses used for both Highlight Detection (HD), Moment
Retrieval (MR), as well as alignment losses critical for ef-
fective side-tuning. Sec. D provides the necessary back-
ground related to the deformable attention mechanism. We
then conduct a series of ablation studies such as Sec. E that
evaluates SDST over other relevant baselines under a fair
comparison using only InternVideo2-1B features. Sec. F
extends the efficiency analysis of the main text, analyz-
ing multiple efficiency metrics like memory, parameters
or running time. Sec. G ablates over the training stabil-
ity of our proposal, and consequently the difficulty of its
corresponding optimization. Sec. H extends our compari-
son against other Parameter-Efficient and Memory-Efficient
Fine-Tuning methods. Sec. I examines the impact of pa-
rameter sharing across intermediate refinement layers and
Sec. J studies the contribution of intermediate features when
leveraging InternVideo2-1B. Additionally, Sec. K provides
an in-depth analysis of our proposed RDSA mechanism, in-
cluding the effect of different sampling strategies, the ad-
ditional CNN-based context-enhancing module, and an ex-
tended analysis of the predicted offsets. Sec. L investigates
the ordering of the modules in the sparse stream S and its
impact on performance. Finally, Sec. M presents various
statistical significance tests, including Friedman and Ne-
menyi analyses, that confirm the robustness of our results.

A. Implementation details

In this section, we describe the most relevant implementa-
tion details of our proposed SDST architecture, a summary
of which is also provided in Tab. A. Note that the reported
hyperparameters correspond only to the best-performing

model. These hyperparameters remain mostly fixed w.r.t.
to existing ST works like [8] and only introduce a hand-
ful new hyperparameters which we set to 1.0 for simplicity,
while we do perform grid search to optimize the learning
rate.

Overall, our method is implemented using PyTorch2.0
and CUDA12.8 and runs on a single NVIDIA RTX 6000
GPU with a precision of fp16. Our models are optimized,
unless stated otherwise, using AdamW with a learning rate
of 1e — 4 and a weight decay of 1e — 4. This follows a step-
based schedule, decaying every 20 epochs. We apply linear
warmup for the first 2000 iterations with a warmup ratio of
0.001 and clip gradients to a max norm of 35.

Our model operates with a hidden dimension of 256
and leverages a sinusoidal positional encoding. The en-
tire model relies on ReLU non-linearities to enhance the
model expressivity. To improve the regularization we use
a dropout of 0.5 and incorporate a droppath with a drop
probability of 0.25. Our model incorporates various Trans-
former blocks for instance for cross-modality injection and
temporal relation learning, all of which have 8-heads, an at-
tention dropout of 0.0, and an attention output dropout of
0.0. The attention modules are initialized with Xavier. The
feedforward modules of the transformer block use a hid-
den dimension ratio of 4 times the chosen hidden dimension
and also leverage a dropout of 0.0 and a Kaiming initializa-
tion. Importantly, following standard practices, we always
incorporate residual connections to improve the stability of
the training and follow a PostNorm strategy [12] that nor-
malizes the input based on a learnable LayerNorm module
based on PostNorm.

Architecturally, our model consists of a dense and sparse
stream, as well as their respective prediction heads. The
dense stream incorporates various Transformer blocks for
cross-modality injection and temporal relation learning, all
of which have 8-heads, an attention dropout of 0.0, and an
attention output dropout of 0.0. The attention modules are
initialized with Xavier. The feedforward modules of the
transformer block use a hidden dimension ratio of 4 times
the chosen hidden dimension and also leverage a dropout
of 0.0 and a Kaiming initialization. Importantly, through-



out the Transformer blocks, we normalize the input through
a learnable LayerNorm module based on PostNorm. Addi-
tionally, one of the key components of our Sparse stream is
the use of our novel deformable attention mechanism named
RDSA. This first applies a context-enhancing CNN is de-
fined as a 2-layer CNN with a hidden dimension of 256, a
learnable LayerNorm, and a non-linearity. Then, after con-
catenating the left-most, center, and right-most tokens, it
uses an MLP to project them to a 64-dimension latent space.
This is then used to apply two simple linear projections to
compute the 4 different sampled Keys, with their respective
attention scores.

For the different prediction heads, we distinguish various
different modules. On the one hand, the CLS and Regres-
sion heads are defined as a 1 and 3-layer MLPs, respec-
tively. On the other hand, we define the actionness head
following previous works like [7], which uses RoiPooling
with a Roi size of 16. These roi features are then used for
the actionness prediction, applying a 3-layer MLP.

Finally, we make several important training considera-
tions. All the experiments across the different datasets use a
batch size of 32 and a minimum video length of 5. FPS is set
to 0.5 for QVHighlights and TACoS, and 1.0 for Charades-
STA.. We train for 60 epochs on QVHighlights, 50 on
Charades-STA, and 150 on TACoS. The number of queries
per sample varies on the nature of the dataset. In QVHigh-
lights and Charades-STA, for instance, we define 30 differ-
ent queries, while for TACoS we use only 5. For Charades-
STA, we use a slightly higher learning rate of 2.5 x 10~*
with a decay schedule of 30 epochs.

B. Description of the chosen datasets

To test the effectiveness of our proposed SDST, we
conduct experiment on three different datasets —i.e.,
QVHighlights[6], TACoS [10] and Charades-STA [2].

QVHighlights: QVHighlights is the only dataset among
the three that provides annotations of both MR and HD
tasks. Concretely, this comprises 10k YouTube videos of
humanly-annotated NLP queries of a vast variety of top-
ics, from daily activities. For convenience, these videos are
trimmed to a maximum duration of 150 seconds.

TACoS: TACos is a widely used dataset for MR consist-
ing of only 127 videos of cooking scenes with an aver-
age duration of 287 seconds. Overall, this includes 19k
sentence-moment pairs. Notice that following previous
works from the literature, we adapt this dataset to sup-
port our multi-task-based model by generating synthetic
saliency annotations. For this, we consider a frame to have
a saliency score of 1 if this belongs to the action, and 0 oth-
erwise.

Charades-STA : Charades-STA extends the original Cha-
rades dataset, including 10k videos and 16k different
sentence-moment annotations that capture a variety of in-
door activities, making it a relevant benchmark to evaluate
models in everyday human activity understanding.

C. Descriptions of the objective functions

In this section, we describe in greater detail the different
objective functions that we used for our proposed SDST.

C.1. Highlight detection loss

Given the dense visual embedding of the final refinement
layer DX € RT*F we first apply a learnable Adaptive-
Pooling mechanism to produce a single aggregated textual
embedding TP°°" € R¥ from the original textual represen-
tations T® € RE*F . We then define the per-frame saliency
scores Y~ € R7 as
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where this cosine similarity is computed for each of the vi-
sual frames. To ensure that a higher score corresponds to
a higher relevance of a given frame w.r.t. the textual em-
bedding TP°° —corresponding to the last layer K— we use a
SampledNCE loss, which ranks the positive frames.

C.2. Moment Retrieval losses

Following the standard DETR pipeline, we apply the Hun-
garian algorithm to obtain a one-to-one matching between
the predicted moment boundaries R® € RM*2 at each in-
termediate layer ¢, and the ground-truth (GT) annotations
Y™ € RM"X2_ Note that unless stated otherwise, we re-
fer to the corresponding matches of the ground-truth Y,,, as
Y" € RM"%2_ Below we describe the different objective
functions that we apply to these matching embeddings.
Classification loss: The classification loss takes the pre-
dicted action probabilities of the M different recurrent de-
coder queries p € RM*! and brings the probability of the
unmatched proposals to 0, while the rest have a probability
of 1. Given the imbalance between matched and unmatched
queries, we leverage a FocalLoss

M
1
_ Ay o
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where p,,, is the predicted probability for proposal m , and
« and +y are the standard Focal Loss hyperparameters that
help address the class imbalance.

Regression losses: We then focus our attention on the ac-
tual regression of the boundaries. For this, following previ-



Pipeline component Module Field Value
Dropout 0.5
K 4
PE Sinusoidal
Hidden dimension 256
Droppath 0.25
Non-Linearities ReLU
FEN ratio 4
General config Attention dropout 0.0
. FFN dropout 0.0
Architecture Attention output dropout 0.0
FFN output dropout 0.0
PreNorm No
Normalization type LN
Attention initialization Xavier
FFN initialization Kaiming
Sparse module Deformable sampling points 4
Type MLP
CLS head Depth |
. Type MLP
Regression head Depth 3
Type MLP
. Depth 3
Actionness head Roi size 16
Roi scale 0
‘ Optimizer ‘ ‘ AdamW
‘ Learning Rate ‘ ‘ le-4
‘ Weight Decay ‘ ‘ le-4
Optimization T
ype Step-based
LR Schedule Decay rate Every 20 epochs
Type Linear
Warmup strategy N. iterations 2000
Ratio 0.001
‘ Gradient clipping Max norm 35
Batch size 32
o FPS 0.5
QVHighlights Min video len 5
Epochs 60
Num. queries 30
Batch size 32
FPS 1.0
Datasets Min video len 5
Charades-STA Epochs 50
Num. queries 30
Learning rate 2.5e-4
Learning rate schedule 30
Batch size 32
FPS 0.5
TACoS Min video len 5
Epochs 150
Num. queries 5

Table A. Summary of the most relevant hyperparameters and implementation details of our model.



ous DETR works [6] we first define an L1 loss given by

M*

Li=1mY

i=1

A~ m
Y, Y]

; 3)

minimizing the absolute error between the predicted and
ground-truth segment boundaries. Additionally, we employ
an IoU-based loss [7] to maximize the overlap between the
predicted and GT action segments:

M* S
21:1 IOU(anv Y")
M* ’

Loy =1- “)
where IoU(Y; ", Y™) is the intersection-over-union between
the predicted and ground-truth segments.

Actionness losses: As described in the Sec. 3.4, our NMS
post-processing first considers the CLS score, which mea-
sures the probability of a predicted segment to be matched
to a GT. As shown by [7], this is not enough as another
pillar to an effective post-processing is having an estimate
of the regression quality. For this, we also define the ac-
tionness scores Y € RM as the maximum overlap of ev-
ery query with any of the GT. In other words, for each of
the learnable recurrent query embeddings we compute the
maximum IOU with any of the GT actions. Then, we apply
an L1 loss to regress this score which we can then leverage
during inference.

M

1 . .

Loct = ME Y7 —maz)” (IOURS,YT))| (5)
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where ?j is the predicted actionness score of the i-th re-
current decoder query, and mazL} (TOU (R}, Y7")) is the
maximum overlap of the i-th query w.r.t. any of the GT
actions.

C.3. Alignment losses

One critical aspect to guarantee an effective side-tuning is
the inclusion of alignment losses which bring the visual
and textual latent space closer in a semantically meaning-
ful way. This is particularly important because, although
the backbone has been pre-trained to ensure some degree
of alignment, adapting it to a new domain such as VTG in-
evitably introduces domain shifts and noise. Without this
alignment losses, this would hence significantly degree the
quality of the features, and thus hinder the final perfor-
mance. In our work we address this issue by introducing
two contrastive losses [8] that enforce video-query consis-
tency at different levels of intermediate representation: 1)
video-level alignment 2) layer-wise alignment. Notably,
these losses are applied to all the intermediate layers inde-
pendently.

C.3.1. Video-level contrastive loss

At a given level /¢, this loss enforces similarity be-
tween action-relevant frames and their corresponding tex-
tual query embedding. Specifically, it takes the embeddings
V¥ and the pooled textual embedding TP°? of that level,
and pulls the positive frames —i.e., belonging to the action—
closer while pushing away the negatives. Interestingly, for
a given j-th frame, we consider the negatives to be all the
other j-th frames of the remaining batch elements, at the
same refinement level /. Thereafter, we enforce our objec-
tive via an InfoNCE loss:

‘Cvideo,cal = InfONCE(V€7 TpOOl) (6)

where InfoNCE [9] maximizes the similarity between the
correct video-text pairs while promoting its separation from
unrelated samples.

C.3.2. Layer-wise contrastive loss

This loss is similar to the previous one but operates across
layers instead of the batch. This is, this ensures that the
same frame-query pair learns different representations at
two distinct levels ¢ and ¢’. This promotes that these rep-
resentations are not redundant, and thus add complemen-
tary information to the model. To be more specific, fol-
lowing [8] we define the negatives at level ¢ as the same
frame-embedding but corresponding to a different interme-
diate layer ¢'.

ﬁm’deo,cal = In.fONCE(Vev TpOOl)' (7)
C.4. Inference

During inference, we apply a soft NMS post-processing to
filter out redundant action predictions. This algorithm sorts
the proposals based on a confidence score, which in our case
we define as the square root of the product of the class prob-
abilities and actionness scores

Cc=1/p-Y" (8)
This prioritizes a high classification confidence together
with a high localization confidence.

D. Background on the deformable attention
mechanism

The Vanilla Attention mechanism is the core component of

Transformers, one of the most popular architectures in the

community at the time of this writing. The attention mech-
anism can be defined as:

Q=XgWgq, K=XcWg, V=XyWy, (9

S = v (10)



Here o is a softmax activation, and X o, X and X, define
the inputs to the query, keys and values projection matri-
ces Wo, Wi, Wy, respectively. In the self-attention case,
X o = X while for cross-attention, X o # Xi.

This mechanism, despite very extended in the commu-
nity these days, presents several important pitfalls like its
quadratic complexity or its slow convergance. This moti-
vated the proposal of various efficient attention mechanisms
to attain similar performance while improving its efficiency.
In this regard, we highlight the Deformable attention mech-
anism, proposed by [15], inspired by the previous works
on the deformable convolution. This mechanism attains a
considerable efficiency boost with respect of the vanilla at-
tention [12] by limiting the amount of attendable keys to
a (small) predefined set of key tokens. More formally, the
key of this module is the lack of explicit interaction between
queries and keys, which are defined as

Q=XoW5' K =XWy, (11)

where WdQ’ef , W%ef are two linear projections. The de-
formable attention thus avoids computing the QKT similar-
ity matrix, and instead employs an offset and attention-score
predictors, Ga and Gy to select and weight —only based on
the queries— a small subset P of selectable keys. The output
of this mechanism, the weighted aggregation of the selected
keys, namely S, is computed as follows

A=GA(Q) eRM*P A =G, (Q) e RM*P (12)

S=) (A, Klc+woA, ) eR"F (13)

M~

1
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where Ga, Ga are often modeled as CNNs and z[y] is the
bilinear sampling of « on index(es) y. This can be seen as a
learnable method to identify, given a specific query, a small
subset of key tokens to attend to, as well as their respective
weight —necessary to compute their weighted average. The
cornerstone of its efficiency boost is thus the fact that it does
not require looking at all the keys to make that decision —
unlike Vanilla Attention— but, instead, it is just a result of a
simple projection layer of the query itself.

E. Detailed ablation using only InternVideo2-
1B features

In order to guarantee a fair comparison between our pro-
posed SDST and the rest of the tested baselines, in Tab. B
we follow the work of [3] and test the relevant baselines
—on 3 independent seeds— using only the InternVideo2-1B
features. Note that we evaluate only the relevant baselines
capable of doing MR and HD. Observe that our method sub-
stantially outperforms the other existing side-tuning method
for VTG [8]. Concretely, it improves its MR capabilities by

Method MR-mAP HD > Very Good

M-DETR 60.20 £ 0.55 34434043 35404+ 041 | 4031 £0.21  63.89 4 0.62
UniVTG 63.51 £0.25 38.834+£026 37.78 £0.16 | 42.68 £0.09 69.34£0.23
QD-DETR 67.78 £ 0.29 4640 £026  455240.15 | 41.82+£0.07 68.06 +0.24
CG-DETR 69.86 + 0.21 49.35+£028  48.6940.17 | 42.72+0.07 69.87 £0.15
TR-DETR 70.08 +0.15 4920 £0.50 47994042 | 4343+£0.16 71.13+£0.25
R2-Tuning® | 71.40 £0.330  53.786 £0.684 51.49 £0.358 | 41.72 +0.085 69.52 +0.472

SG-DETR 73.52+£0.05 5791+0.13 5564 +0.20 | 4391 £0.14 71.47+0.73

Ours ‘ 7320 +£0.226  56.76+ 0.53 55.31+0.23 ‘ 43.93 £0.063  71.62+ 0.348

Table B. Evaluation of a set of representative baselines when lever-
aging InternVideo2-1b features, evaluated on QVHighlights val
split. Bold stands for the best and underline for the second-best.

Charades-ST TACoS

Method
R1@0.5 R1@0.7 mIoU‘Rl@O,S R1@0.7 mloU

R2-Tuning 68.2 4626  58.14 | 38.02 2527 3536
SG-DETR 70.2 49.5 59.1 4.7 29.9 40.9
FlashVTG 70.3 49.9 - 41.8 24.7 37.6
Ours ‘ 72.0 52.6 61.2 ‘ 44.5 323 422

Table C. Comparison of multiple representative baselines
on Charades-STA and TACoS datasets when leveraging
InternVideo2-1b features. Bold stands for the best and underline
for the second-best.

a 3.82% mAP, while it improves HD by a 2.21% mAP and
2.1% HIT@1. Similarly to our previous observations, our
method outperforms the rest of the methods and remains
competitive with the SG-DETR and even improves it in the
two different HD metrics. We deem this to be particularly
noteworthy given that our method poses only 27.3% of the
trainable parameters of SG-DETR.

Additionally, in Tab. C we also show the analysis of the
two remaining considered datasets, these being Charades-
STA and TACoS. Similarly, in these two scenarios, our
method improves the second-best performing works —i.e.,
FlashVTG for Charades-STA and SG-DETR for TACoS-
in all the metrics but R1@0.5 on TACoS where it incurs in
a marginal degradation.

F. Additional efficiency analysis

In this paper, we normally study the efficiency of our model
w.r.t existing related works based only on the number of
parameters. In Tab. D we extend this analysis to the training
memory and the running time. For simplicity purposes, we
limit this study to the QVHighlights dataset.

G. Study of the inherent optimization difficulty

Undeniably, existing SOTA models —e.g., [3, 8]- accumu-
late a considerable number of losses and components. And
unfortunately, ours is no exception. While this represents
a considerable opportunity for future studies trying to cre-
ate more compact models, in this section we aim to extend
the ablation from Tab.7 of the main text where we justified
the necessity of the various model components of the sparse
stream S. Concretely, first of all, we focus on the need for
the different proposed losses —with the exception of those



# Params (M) Memory (GB) Runtime (it/s)

Moment-DETR 4.8 1.54 7.45
R2-Tuning 2.7 2.4 5.55
TR-DETR 79 1.76 4.75
HL-CLIP 2.0 22.98 0.64
Llava-MR 17.0 ~ 80 x 8 -
MR .Blip 19.0 ~ 80 x 8

SG-DETR 15.0 - -
Flash-VTG 10.9 23 5.2
Ours ‘ 4.1 34 4.16

Table D. Efficiency summary of a set of representative models
evaluated on QVHighlight with InternVideo2-1b features, and a
batch size of 32.

Ly Liov Latign Lact  Las MR HD
R1@0.5 R1@0.7 mAP@0.5 mAP@0.75 mAP | mAP HIT@1
v v v v 71.68 58.58 72.28 56.28 550 | 4352 7135
v v v v 73.94 59.55 72.07 55.21 5425 | 43.35 71.26
v v v v 71.55 58.13 71.55 55.21 5425 | 43.68  69.48
v v v v 73.1 59.61 73.87 57.01 55.6 | 4329  71.00
v v v ' 70.52 57.23 69.88 54.82 5295 | 4228  68.65
v v v ' v ‘ 73.68 60.90 73.52 57.42 55.60 ‘ 44.00  72.00

Table E. Importance of the main losses of our model when evalu-
ated on QVHighlight val with InternVideo2-1b features.

Perm. # MR HD

R1@0.5 R1@0.7 mAP@0.5 mAP@0.7 mAP mAP HIT@1
1 73.03 59.10 72.78 56.31 55.17 43.70 70.58
2 73.94 59.35 73.92 57.26 55.87 44.30 72.58
3 72.19 57.87 7243 56.22 54.72 44.03 71.74
4 7297 58.77 73.13 56.84 55.58 44.52 71.68
Chosen 73.68 60.90 73.52 57.42 55.60 44.00 72.00

Mean+Std ‘ 73.16 £0.61  59.19+0.98 73.15+0.52 56.81 £0.48 5538 £0.40 ‘ 44.11+0.27  71.71 £0.65

Table F. Performance across different permutations with main re-
trieval and detection metrics.

that are indispensable to solve the inherent task, like the
saliency-related losses. For this, find in Tab. E.

In terms of difficulty of optimization and parameter
search, we highlight the considerable robustness in terms
of hyperparameter choice. Concretely, as specified in Sec.
A, the vast majority of the hyperparameters are kept consis-
tent with previous relevant works like [8]. The newly intro-
duced hyperparameters were set to 1.0 for simplicity. Nev-
ertheless, this does not guarantee the robustness to this hy-
perparameter choice. Consequently we propose the follow-
ing experiment: We randomly sample 4 additional different
configurations —i.e., all the loss weights— defining a range
of [0.25, 2] for Ar1, A\rou, Aaet and Ay and from [0.1, 0.5]
for Asars Aatign_video aNd Agiign tayer- Observe in Tab. F the
results of each of these configurations —defined in Tab. G-
and observe that our model does not deviate significantly
given these new random permutations. In fact, these more
robust performance metrics —not requiring cherry picking
the best configuration— would still rank equally in the over-
all ranking from Tab.1.

Perm# | Ap1 Ajou  Asal  Aalignvideo  Aalignlayer  Aact  Acls

1 147 191 0.11 0.18 0.42 0.84 1.27
2 143 041 0.17 0.33 0.37 03 029
3 1.81 092 036 0.42 0.23 0.63 0.64
4 0.4 1.24  0.31 0.1 0.16 1.13 0.64
Chosen 1 1 0.1 0.1 0.1 1 1

Table G. The randomly chosen 4 different loss weight configura-
tions and the final chosen configuration.

Method #Params Memory MR HD

M) (GB) R1@0.5 R1@0.7 mAP mAP HIT@]
w/o Tuning | 2.70 235 66.97 51.10  46.19 4145 67.23
E®VA [13] 2.57 2.96 68.97 53.16  47.68 41.04 68.13
LoSA [4] 6.40 2.39 7213 5832 5373 41.82 68.19
LST[11] 2.04 249 70.32 5555  50.59 41.53  69.48
R2-Tuning[8] 2.70 2.44 70.84 5535 5130 41.64 69.74
Ours | 410 3.40 73.68 60.90  55.60 44.00 72.00

Table H. Performance comparison of different tuning methods on
QVHighlights val split. Bold stands for the best.

H. Comparison with other PEFT and MEFT
methods

In this section, we compare our proposed SDST
against other relevant PEFT methods when leveraging
InternVideo2-1B features for QVHighlights val split. Im-
portantly, we note that we were unable to evaluate rel-
evant methods based on Adapters, LORA, or Prompt-
based, due to severe computational limitations. Specifi-
cally, these methods require full backpropagation through
the frozen backbone, exceeding the memory capacity of our
NVIDIA RTX 6000. This underscores the importance of
MEFT methods like ST. Furthermore, [8] shows that these
memory-expensive alternatives underperform over ST for
VTG, allowing us to safely restrict the scope of this ablation
to w/o Tuning, and to relevant ST baselines —i.e., E3VA[13],
LoSA [4], LST [11] and R?-Tuning [8]. Among these, only
R2-Tuning is naturally suitable for a multi-modal setup like
ours. Consequently, for a fair comparison, we made mini-
mal modifications to adapt the other baselines to our setting.

Observe in Tab. H that all these baselines poses a compa-
rable number of trainable parameters, with the exception of
LoSA [4] which has a slightly higher count. Similarly, all
these methods show a very efficient memory usage, which
as mentioned before, contrasts with other PEFT alterna-
tives. We find that while all these tested baselines consid-
erably improve the w/o Tuning on MR, they perform quite
similarly in terms of HD. Overall, our proposed SDST im-
proves all these methods, with a especially significant boost
on HD.

In Tab. I we include the homologous analysis for
Charades-STA and TACoS datasets which shows similar re-
sults.



| R1@0.5 R1@0.7 mIOU | R1@0.5 R1@0.7 mIOU

wio Tuning | 67.69 4556  57.98 | 3422 2182 3251

E3VA [13] 66.13 45.11 56.23 38.77 26.02 36.15
LoSA [4] 67.69 45.16 57.42 38.54 24.49 35.71
LST[11] 68.2 46.26 58.14 38.02 25.57 35.26

R2-Tuning[8] 69.25 46.67 58.69 39.54 27.37 36.27

Ours | 7200 5260 6120 | 4450 3230 4220

Table 1. Performance comparison of different tuning methods for
MR on Charades-STA and TACoS. Bold stands for the best.

Shared MR HD Params
R1@0.5 R1@0.7 mAP@0.5 mAP@0.75 mAP ‘ mAP HIT@1 ‘

v 73.68 60.90 73.52 5742 55.60 | 44.0 72.00 4.10M

71.23 57.1 71.62 55.44 54.1 | 43.82 70.45 1243 M

Table J. Ablation of the effect of using shared vs unshared param-
eters on QVHighlights val split. Bold stands for the best.

I. Parameter sharing in SDST

Tab. J compares the performance of SDST with and with-
out parameter sharing. This is, we evaluate if creating in-
dependent SG side-tuners for each of the K = 4 different
intermediate layers results in an improved performance on
the MR and HD tasks. Observe that this is not the case.
Despite the additional 8.32M parameters, unsharing the dif-
ferent side-tuning modules in fact results in a performance
degradation in all the tested metrics. We hypothesize that
sharing the same alignment module (see Eq.2) with the sub-
sequent L,;4, loss, promotes that 1) embeddings share a
unique latent space while 2) different layers focus on dif-
ferent semantics. This allows the sharing of the remaining
modules, which we observed contributes to stabilizing the
optimization, and thus, improve performance.

J. Extended ablation on the use of intermediate
InternVideo2-1B features

In Sec. 6.1 we propose an ablation study to showcase the
importance of the different refinement steps in performance,
as well as quantify the effect of using intermediate layers
instead of using the last-layer features only. For complete-
ness, in Tab. K we present the complete ablation with all
the evaluated metrics that further support our findings and
insights.

K. Study of deformable attention

Action-length-based analysis: In Sec. 6.2 we expose the
empirical benefits of our proposed RDSA method over the
standard CA [12], Deformable CA [15] and even decoder
query initialization mechanisms like [14]. To complement
these results, in Tab. L we disentangle the MR performance
according to the action length —i.e., short, middle, and long
actions. This comparison indicates that one of the core lim-

K | Interm? MR HD
R1@0.5 R1@0.7 mAP@0.5 mAP@0.75 mAP ‘ mAP HIT@1
1 v 68.00 54.13 68.72 51.23 48.72 | 43.66  68.26
2 v 71.94 57.48 71.98 55.15 53.64 | 4349  69.61
3 ' 72.84 58.19 72.92 56.0 54.69 | 43.85  69.94
4 v 73.68 60.90 73.52 57.42 55.60 | 44.0 72.00
5 v 72.39 58.77 71.71 55.35 54.34 | 437 71.87
1 68.00 54.13 68.72 51.23 48.72 | 43.66  68.26
2 73.23 59.29 7275 56.61 55.06 | 44.18  71.68
3 73.61 59.42 73.27 56.41 55.32 | 43.69  70.84
4 70.84 57.03 72.02 54.27 54.6 | 4429 7155
5 70.00 57.03 70.62 54.72 53.54 | 4327  68.52

Table K. Ablation of the effect of refining over multiple refinement
levels —i.e., last k— and of the use of intermediate versus last-layer
features. Results correspond to QVHighlights val split

Att. strat. | mAPshort mAPmiddle mAP long mAP
Stand. CA 331 45.92 51.17 42.72
Def.CA 17.64 57.68 56.92 54.27
Ours | 18.38 (+0.74) 58.15 (+0.47) 59.76 (+2.84) 55.60 (+1.33)

Table L. Performance comparison of different attention strategies
across different video lengths from the QVHighlights val split.
We include the absolute difference between our method and the
second-best performing baseline —i.e., Def. CA. Bold stands for
the best.

itations of the standard CA module is its almost complete
inability to correctly identify short actions. Observe that
its performance over short actions degrades by 14.33% and
15.07 w.r.t..the Deformable CA and RDSA, respectively.
We also observe that our method is especially effective at
predicting long actions, improving by 2.84% mAP w.r.t. the
Deformable CA.

Effect of the CNN and the sampling points: In this sec-
tion, we are also interested in providing further insights nec-
essary for a deep understanding of RDSA. To be more spe-
cific, we focus our attention on two important aspects of
this module, namely the points that are sampled to form
the alternative query embeddings, and the additional CNN
module to gain local context (see Eq. 10).

For this, in Tab. M we ablate over three possible sam-
pling strategies. The first samples only the center frame
of the action, the second samples both the left and right-
extremum of the action boundaries, and the later samples
all these 3 embeddings. Note that as described in Sec. 3.3.4,
these embeddings are sampled based on the predicted action
reference, and after concatenation, are used as alternative
query embeddings for a Deformable Self-Attention mecha-
nism.

In this regard, our ablation indicates that the RDSA ben-
efits the most from the extremum embeddings when also
incorporating a CNN module. This indicates that the CNN
is effectively gathering context of the neighborhood of the
current action boundaries, providing critical information for
the offset prediction, and thus, of where the model should



Sampling points | CNN MR HD

R1@0.5 R1@0.7 mAP@0.5 mAP@(0.75 mAP \ mAP HIT@1

. 71.94 58.39 71.37 55.35 53.57 | 4359 7123

v 70.97 57.03 71.45 55.18 54.01 | 43.44  70.58

Lr 72.26 57.16 7177 55.03 53.55 | 4326 70.71

v 72.32 57.74 7231 55.91 5436 | 4328  71.81

e 72.13 58.77 71.54 54.81 53.94 | 4325  71.68

v 73.68 60.90 73.53 57.42 55.60 | 44.00  72.00

Table M. Ablation of the effect of different sampling strategies like center-sampling (c), left-most and right-most action-boundary sampling
(1) and (1), respectively. We also quantify the importance of our additional CNN module for enhanced context learning. Results correspond

to QVHighlights val split. Bold stands for the best.

look to further refine the predicted segments.

We also observe that the center embeddings are neces-
sary even though they seem to play a lesser role in the over-
all performance. Interestingly, the use of a CNN in fact
harms the effectiveness of these embeddings. We conjec-
ture that by definition, the center embeddings tend to be
surrounded by very action-like embeddings. Thus, the local
neighborhood does not necessarily provide useful informa-
tion, and might even cause learning instabilities or aggra-
vate the overfitting.

In short, these experiments show the importance of using
the 3 proposed sampled embeddings, and the overall posi-
tive impact that the additional CNN module has on gath-
ering information on the local neighborhoods of the action
boundaries.

Extended analysis on the predicted offsets: Finally, we
extend the analysis provided in Sec. 6.2 that sheds light on
where the predicted offsets point to. Concretely, in Fig. A
we additionally depict a similar analysis for a head that ini-
tializes the heads near the center of the action —i.e., 0. Ob-
serve that in this case, similar to our previous observations,
we find that the original Deformable CA [15] keeps the off-
sets closer to the original initialization, suggesting a lack of
proper understanding of the input video. Our method, in
contrast, learns to point the offsets over the frames closer
to the left-most boundary. Also, we find that in our model
learns to look more left as the model processes deeper lev-
els.

L. Study of the ordering of the different mod-
ules of the sparse stream

One important aspect to consider is the ordering of the 4
different modules of the sparse stream. For this, in Tab. N
we evaluate multiple relevant combinations. Note that we
avoid ablating over the final FFN module due to computa-
tional limitations. In this regard, Tab. N indicates that it is
beneficial to include the CA module to gain textual context
as early as possible.

2.0
15 —e— Deformable CA
o —e— RDSA
% 1.0 ---- Initialization
2 05 Right Extremum
£ Left Extremum
© 00F e
¢ D —
= -0.5 B ]
o
o —-1.0
-4
-15
-2.0
0 1 2 3

Refinement levels

Figure A. Attention-weighted offset distances across refinement
levels over head 2 when evaluating QVHighlights val split.

Mod. permutation MR HD
R1@0.5 R1@0.7 mAP@0.5 mAP@0.75 mAP ‘ mAP HIT@1
SA-CA-Def-FFN 70.77 56.13 71.54 54.66 53.81 | 43.36 70.39
SA-Def-CA-FFN 70.97 57.29 71.30 54.72 53.74 | 43.06 69.87
Def-SA-CA-FFN 71.81 57.61 71.61 55.05 5391 | 43.16 70.19
Def-CA-SA-FFN 72.77 58.71 72.78 56.46 54.98 | 44.04 71.35
CA-Def-SA-FFN 72.58 59.42 7278 57.26 5494 | 43.46 70.77

CA-SA-Def-FFN ‘ 73.68 60.90 73.52 57.42 55.60 ‘ 44.00  72.00

Table N. Ablation on the importance of the ordering of the com-
ponents in the sparse stream when evaluated on QVHighlights val
split.

M. Ablation statistical significance tests

In this section, we aim to assess if the performance of our
proposed SDST (ours) significantly differs from the other
relevant baselines. For our main results, we were unable to
establish a fair comparison with the other baselines across
various seeds, given that for instance QVHighlights zest has
a limited number of submissions. Consequently, we fo-
cus on the statistical study of the different model rankings
across all the 3 studied datasets and their respective met-
rics. Concretely, we carry out two primary statistical tests:
the Friedman test [1] and Nemenyi’s test [5].

M.1. Friedman Test

The Friedman test is a non-parametric statistical test to test
if k different variables are part of the same population. Con-
cretely, we apply this test to study if given a set of various
models, their rankings differ significantly across different



| QVHighlights(test) | Charades-ST | TACoS
Method | MR \ HD \ \
R1 mAP > Verygood R1 R1
@0.5 @0.7 @0.5 @0.75 Avg. | mAP HIT@1 | @0.5 @0.7 mIOU | @0.5 @0.7 mIOU

Moment-DETR 9 9 9 9 9 7 6 9 9 9 9 9
QD-DETR 7 7 7 7 7 5 4 8 8 - 7 7 7
UniVTG 8 8 8 8 8 6 5 7 7 6 8 8 8
CG-DETR 5 6 5 6 6 4 2 6 6 5 5 6 5
BAM-DETR 6 5 5 5 5 - - 5 4 4 4 3 3
R2-Tuning 4 4 4 4 4 3 3 4 5 3 6 4 6
SG-DETR 1 1 1 1 1 1 1 3 4 2 1 2 2
Flash-VTG T 3 3 2 3 3 - - 2 2 - 3 5 4
Ours¥ | 2 2 3 2 2 | 2 (| 1 1| 2 1 1

Table O. Comparison with the SOTA on QVHighlights fest and val. Also note that for comparability purposes, none of these results rely
on pre-training. ' indicates that the method uses InternVideo2 backbone (comparable to ours).

datasets and metrics. We define the null hypothesis of the
Friedman test as all models perform similarly, hence im-

; T . ? Moment-DETR 0.0012 v
plying that there are no significant differences in the rank- QD-DETR 0.0013 v
ings across datasets/metrics. Mathematically, the Friedman UniVTG 0.0011 v
statistic x% is given by CG-DETR 0.0013 v

BAM-DETR 0.0013 v
R2-Tuning 0.0013 v
k 2 SG-DETR 0.7926
X% = ﬁéﬁ-l) Z (Ri — N(k;l)> . (14 Flash-VTG 0.0011 v

i=1

where N is the number of datasets and their respective
metrics. K is the number of tested models, and R; is the
sum of ranks for model ¢ across the different datasets and
metrics.

In our case, the Friedman test yielded a statistic of X% =
5.640 with a p-value of 0.933. This is greater than 0.05, the
threshold that is typically employed to determine the statis-
tical significance. Hence, we can reject the null hypothesis,
and conclude that there is no significant difference between
the rankings of the models evaluated on all datasets. In other
words, we observe that the performance of the various eval-
uated baselines, including our SDST, perform consistently
across different datasets and metrics.

M.2. Pairwise Nemenyi’s Test

In this second statistical significance test we are interested
in a more fine-grained analysis that might allow us to deter-
mine if our proposed method performs significantly better
than the remaining considered baselines —especially of the
R2-Tuning and the SG-DETR. For this, we proceed with a
pairwise comparison using the Nemenyi’s test. More in de-
tail, for each pair of models, the Nemenyi test statistic is
calculated based on their respective rank differences across
the various datasets and metrics. We present the obtained
p-values in Tab. P. These results indicate that our method
(SDST) performs statistically better than all the other base-
lines with the exception of SG-DETR which performs sta-
tistically on par. This matches our previous observations

Comparison w.r.t. SDST ‘ p-value ‘ Statistically different

Table P. Nemenyi’s significance test across the various pair-wise
comparisons w.r.t. to our proposed SDST.

and certifies that our method attains statistically equivalent
performance to SOTA while using only 27% of its respec-
tive parameter count.

These results indicate that for Ours vs SG-DETR, the p-
value is 0.7926, meaning there is no statistically significant
difference between the two methods. In contrast, for com-
parisons between Ours and the other models, the p-values
are all below 0.05, suggesting that Ours is significantly bet-
ter than the other models.
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