Appendix
A. BRICKGPT Implementation Details

Captioning Details. The complete prompt template used
for GPT-40 caption generation is as follows:

“This is a rendering of a 3D object built with LEGO
bricks with 24 different views. The object belongs to the
category of { CATEGORY_NAME}. You will generate five
different captions for this { CATEGORY_NAME} that:

1. Describes the core object/subject and its key geometric
features

2. Focuses on structure, geometry, and layout information

3. Uses confident, concrete, and declarative language

4. Omits color and texture information

5. Excludes medium-related terms (model, render, design)

6. Do not describe or reference each view individually.

7. Focus on form over function. Describe the physical
appearance of components rather than their purpose.

8. Describe components in detail, including size, shape,
and position relative to other components.

9. The five captions should be from coarse to fine, with
the first one being the most coarse-grained (e.g., a general
description of the object, within 10 words) and the last one
being the most fine-grained (e.g., a detailed description of
the object, within 50 words). The five captions should be dif-
ferent from each other. Do not include any ordering numbers
(e.g., 1, a, etc.).

10. Describe the object using the category name "{ CATE-
GORY_NAME}" or synonyms of the category name "{ CAT-
EGORY_NAME}"”

StableText2Brick Details. We generate StableText2Brick
starting from the objects in ShapeNetCore [2]. While
ShapeNetCore provides both voxel and mesh representa-
tions, we find that working directly with mesh data better
preserves geometric details. We voxelize the 3D mesh into a
20 x 20 x 20 grid representation and generate its brick struc-
ture using a delete-and-rebuild algorithm. This algorithm is
similar to that studied in prior work [46]. However, instead
of initializing the structure by filling its voxels with 1 x 1
unit bricks and randomly merging them into larger bricks,
we greedily place bricks to fill the voxels layer-by-layer from
bottom to top. We use eight commonly available standard
bricks: 1 x 1,1 x2,1x4,1x6,1x8,2x2,2x4,and
2 x 6. We prioritize placing 1) bricks that are only partially
supported by bricks on the layer below, 2) bricks that touch
multiple bricks on the layer below, 3) large bricks, and 4)
bricks of the opposite orientation from bricks on the layer
below.

After initializing the structure, we apply the new sta-
bility analysis algorithm [38] to iteratively identify weak
regions, delete their bricks, and rebuild them by greedily
placing bricks, prioritizing 1) bricks that connect multiple

User

Create a LEGO model of the input. Format your response as a list of bricks: <brick dimensions>
<brick position>, where the brick position is (x,y,z).

Allowed brick dimensions are 2x4, 4x2, 2x6, 6x2, 1x2, 2x1, 1x4, 4x1, 1x6, 6x1, 1x8, 8x1, 1x1, 2x2.
All bricks are 1 unit tall.

Input:
A bench featuring a flat surface for sitting and a vertical back support.

Each line of your output should be a LEGO brick in the format "<brick dimensions> <brick
position>". For example:

2x4 (2,1,0)

DO NOT output any other text. Only output LEGO bricks. The first brick should have a z-
coordinate of 0.

Here are some example LEGO models:

Input:
Bed with rectangular base and straight headboard.

Output:

1x2 (13,18,0)

1x2 (13,2,0)

2x2 (0,18,0) [...]

[...4 more examples omitted...]

Do NOT copy the examples, but create your own LEGO model for the following input.

Input:
A bench featuring a flat surface for sitting and a vertical back support.

Output:

@ LLaMA-3.2-1B-Instruct (pre-trained)
L U

1x2 (7,4,0)
1x2 (13,4,0)
2x1 (13,2,0)
2x1 (13,0,0)
2x2 (11,4,0)
1x2 (11,2,0)
2x4(9,14,0)
2x2(9,2,0)
2%2 (7,4,1) Py
2x2 (5,4,1)

4x1 (7,18,1)
4x2 (6,18,1) [..]

Rendered brick structure

Figure 8. Few-shot Learning. Given a prompt and several example
structures in text format, a pre-trained LLaMA model can generate
brick designs with some structure.

disconnected components and 2) large bricks. This process
is stochastic; we choose weak regions randomly as per [46],
and we break ties between two bricks of the same heuristic
value randomly. Using this delete-and-rebuild algorithm, we
generate two different structures for each object.

With our delete-and-rebuild shape-to-brick algorithm, we
generate 62,0004 brick structures covering the 21 categories
with 31,218 unique 3D objects from ShapeNetCore. Among
the selected 3D objects, ~92% (i.e., 28,822) of them have
at least one stable brick design, which offer 47,000+ stable
layouts. Our StableText2Brick dataset significantly expands
upon the previous StableLego dataset [38] in several key
aspects: it contains > 3x more stable unique 3D objects
with > 5x more stable structures compared to 8,000+ in
StableLego, spans a diverse set of 21 object categories, and
provides detailed geometric descriptions for each shape.

Training Details. The full prompt that we use to construct
our instruction fine-tuning dataset is as follows:

“[SYSTEM]You are a helpful assistant.

[USER|Create a LEGO model of the input. Format your
response as a list of bricks: <brick dimensions> <brick posi-
tion>, where the brick position is (X,y,z).

Allowed brick dimensionsare 1 x 1,1 x 2,2 x 1,1 x 4,

4x1,1x6,6x1,1x88x1,2x2,2x%x4,4x2,2x6,
6 x 2. All bricks are 1 unit tall.

Input:

[INSERT CAPTION]”

We fine-tune using low-rank adaptation (LoRA) [23] with
a rank of 32, alpha of 16, and dropout rate of 0.05. To pre-
vent catastrophic forgetting and training instability, we ap-
ply LoRA to only the query and value matrices for a total
of 3.4M tunable parameters. We train for three epochs on
eight NVIDIA RTX A6000 GPUs. We use the AdamW op-
timizer [44] with a learning rate of 0.002, using a cosine
scheduler with 100 warmup steps and a global batch size of
64. The total training time is 12 hours.

Inference Details. The sampling temperature is set to 0.6
for all experiments. During brick-by-brick rejection sam-
pling, to mitigate repeated generation of rejected bricks, we
increase the temperature by 0.01 each time the model gener-
ates a brick that has already been rejected.

To force each output brick to be in the format “{h}x{w}
({x},{y},{z})”, we sample only from the set of valid tokens
during each step. For example, the first token must be a digit,
the second an ‘x’, and so on. This has little to no effect
on the output of BRICKGPT, but helps force the baseline
pre-trained models to output bricks in the specified format.

In our experiments, only 1.2% of the generated designs
exceed the maximum number of rollbacks and fail to produce
a stable final structure.

Novelty Analysis. For each generated structure, we find its
closest structure in the training dataset, measured by comput-
ing the Chamfer distance in voxel space. As seen in Figure 9,
the generated structures are distinct from their nearest neigh-
bors in the dataset, confirming that our model can create
novel designs rather than simply memorizing the training
data.

In-context Learning. We use LLaMA-3.2-1B-Instruct [11]
as our base model, chosen for its computational efficiency.
The in-context learning pipeline is shown in Figure 8, where
the base model can generate brick structures through in-
context learning, while suffering from collisions and dis-
connectivity. We do not use rejection sampling or rollback
when evaluating zero-shot or few-shot generation, as doing
so results in an excessive number of rejections and a sharp
increase in generation time.

B. Robotic Assembly

We demonstrate automated assembly using a dual-robot-
arm system as shown in Figure 10. The system consists
of two Yaskawa GP4 robots, each equipped with an ATI
force-torque sensor. A calibrated baseplate is placed between
them, and the robots use the bricks initially placed on the
plate to construct the brick structure. Given a brick struc-
ture B = [by,bs,...,bn], we employ the action mask in

[40] with assembly-by-disassembly search [73] to generate a
physically executable assembly sequence for the robots, i.e.,
reordering the brick sequence so that 1) each intermediate
structure is physically stable by itself, 2) each intermediate
structure is stable under the robot operation, and 3) each as-
sembly step is executable within the system’s dexterity. With
the executable assembly sequence, an asynchronous planner
[24] distributes the assembly tasks to the robots, plans the
robots’ movements, and coordinates the bimanual system to
construct the brick structure. The robots use the end-of-arm
tool and the manipulation policy presented in [24, 39] with
closed-loop force control to robustly manipulate bricks and
construct the structure.

C. Manual Assembly

As shown in Figure 11, human users can assemble our gen-
erated structures, demonstrating their physical stability and
buildability. Notably, since our method outputs a sequence
of intermediate steps, it naturally serves as an intuitive as-
sembly guide.

D. Limitations

Though our method outperforms existing methods, it still
has several limitations. First, due to limited computational
resources, we have not explored the largest 3D dataset. As a
result, our method is restricted to producing designs within
a 20 x 20 x 20 grid across 21 categories, while recent 3D
generation methods can create a wider variety of objects.
Future work includes scaling up model training at higher
grid resolutions on larger, more diverse datasets, such as
Objaverse-XL [7]. Training on large-scale datasets can also
improve generalization to out-of-distribution text prompts.

Second, our method currently supports a fixed set of com-
monly used toy bricks. In future work, we plan to expand
the brick library to include a broader range of dimensions
and brick types, such as slopes and tiles, allowing for more
diverse and intricate designs.

Ours

Closest
design in
dataset
(Chamfer
distance)

&
&

N®e 42
2l 14 KN

Figure 9. Novelty Analysis. For each structure generated by BRICKGPT, we find the closest structure in the training dataset as measured by
Chamfer distance in voxel space. The generated structures are distinct from their nearest neighbors, indicating low memorization.

Generated Structure Automated Assembly Using LEGO Bricks Finished Assembly

=~ —

B

Figure 10. Automated Assembly. We demonstrate robotic assembly of generated structures using LEGO bricks.

"A backless bench with armrest." "A two-seater bench with a straight backrest and an “Chair with cushioned backrest and seat, framed by “Straight-backed chair with square seat.” "A high-backed chair."
open rectangular design on the sides, [...]" flat, horizontal armrests supported by four straight
legs.

“The chair features an arched backrest [“A rectangular bookshelf featuring three horizontal "Abookshelf with horizontal tiers." *A basic sofa."
shelves with open sides, supported by four [...)" low armrests, and short, sturdy |Egs

“Sofa with a straight backrest and angular armrests." "Rectangular table featuring four straight legs and a “Simple table with a flat top and two side supports.” “Biliard table featuring a broad, rectangular surface “A rectangular table with four legs."
flat surface." and parallel decorative legs."

"A classical guitar.” “Square table with four evenly spaced cylindrical *A rectangular table with a slatted surface resting on “A rectangular table featuring an elongated flat top “Rectangular table with solid flat top and crossbeam
legs." X-shaped intersecting legs." with four intricately carved [reinforced legs."

“Guitar with an hourglass body and a long neck” “An acoustic guitar with an hourglass shape [... A sharply contoured guitar with a V-shaped body, itar with 3 v "A streamlined vessel with a long, narrow hull."
featuring an elongated neck and bo-fy, slender neck [

“A cylindrical bottle with a long, narrow neck “Jar with spherical body “Long vessel with several tiered decks and twin “treamlined vessel with prominent upper structure “A streamlined, elongated vessel."

tapering upwards to a small opening, and [...]" smokestacks." and smooth contours."

“This vessel displays a sleek and elongated form, “This car displays an elongated body, rounded "Sleek vintage car featuring a long horizontal body “A classic-style car with a prominent front grille." “Rectangular pot with straight, defined sides and
characterized by a central cylindrical tower [...]" contours, and open-top configuration." [open top."

Figure 11. Manual Assembly. We demonstrate manual assembly of generated structures using LEGO bricks.

	Introduction
	Related Work
	Dataset
	Method
	Model Fine-tuning
	Integrating Physical Stability
	Brick Texturing and Coloring

	Experiments
	Implementation Details
	Brick Structure Generation Results
	Extensions and Applications

	Conclusion
	BrickGPT Implementation Details
	Robotic Assembly
	Manual Assembly
	Limitations

