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Supplementary Material

A. Prompting SAM ablation study
A.1. Setup

Here, we describe the ablation study on prompting SAM.
The study evaluates three metrics: detection improvement
(bounding box; bbox), segmentation improvement (segm),
and pose improvement (pose). For all experiments, we use
bounding boxes and segmentation masks from RTMDet-1
and pose estimates from MaskPose as the baseline pipeline.
The experimental pipeline remains consistent throughout.

Detection and segmentation changes are evaluated on
bounding boxes and segmentation masks refined by SAM,
following the det-pose-SAM pipeline. Pose estimation is
assessed by re-running MaskPose on refined masks, form-
ing a det-pose-SAM-pose pipeline, similar to the setup in
Tab. 4.

All experiments use RTMDet-I [22] as the detector,
MaskPose-b as the pose estimator, and sam2-hiera-base+
as the SAM2 [25] model. Each experiment is assigned a
specific name, listed in the leftmost column of the tables,
for clear referencing. When experiments appear in multi-
ple tables for comparison, their names remain consistent for
easier cross-referencing. Each result is highlighted in green
or red depending on whether it improves or hinders perfor-
mance compared to the RTMDet+MaskPose baseline.

Detection vs. segmentation. Before analyzing the re-
sults of the ablation study, we address a counterintuitive ob-
servation. When refining masks on OCHuman, segmenta-
tion and detection often conflict; improvement in one can
lead to a decrease in the other. This is due to the focus on
people with high overlap in the OCHuman dataset. Many
examples consist of a large area representing the main body
and smaller, disconnected body parts. Examples are shown
in Fig. 5.

When mask refinement focuses heavily on the main seg-
ment, segmentation scores improve, as missing discon-
nected parts has little impact on mask IoU. Conversely,
overly general prompting can cause SAM to merge both in-
stances into one mask, creating a bounding box that may
be more accurate than the original. Large masks merge in-
stances, while small masks often miss disconnected body
parts.

We prioritize detection, even though the goal is to im-
prove all three metrics. The mask refinement step in BBox-
Mask-Pose must ensure that segmented masks adequately
remove limbs during the mask-out step, as shown in Figs. 4c
and 9. However, excessively large masks prevent decou-

(b)

Figure 5. Segmentation error involving a small number of pixels,
like the circled hands, may have a large impact on detection accu-
racy measured by bounding box IoU. A detector returning correct
bounding boxes, which would be nearly identical for both persons
especially in (a), can make segmentation of the two people very
challenging. Improving detection may thus lead to decrease in
segmentation performance. Keypoints used for SAM prompting
are marked (best viewed in zoom).

pling of merged instances, as seen in Fig. 2b. Thus, our
aim is to improve detection without significantly hindering
segmentation performance.

A.2. Results

Bounding box. The question of whether to prompt SAM
with a bounding box is addressed in Tab. 6, with examples
provided in Fig. 3b. When the bounding box is accurate,
or nearly so, it significantly improves segmentation qual-
ity. However, when the bounding box is incorrect, such as
missing parts of an occluded person (Fig. 4c¢), prompting re-
stricts mask refinement to the given bounding box, reducing
the chance of recovery.

In the final version of BBox-MaskPose, we do not use
bounding box prompting, as we prioritize SAM’s ability to
explore and detect previously missed body parts (Fig. 11).
However, when bounding boxes are reliable, prompting
with them can further refine segmentation and pose esti-
mation, yielding improved results, as shown in Tab. 4 in
Sec. 4.3. Bounding box prompting is also advantageous
when ground truth bounding boxes are available.

Number of positive keypoints (). Tab. 6 evaluates the
effect of using different numbers of keypoints for prompt-
ing.



name ‘ batch bbox @ O ‘ bbox segm pose

RTMDet [22] + MaskPose | 31.1  27.1 453

Al X v 0 0] 275 31.6 442
A2 X 4 2 0] 285 316 443
A3 X 4 4 0| 293 309 440
A4 X 4 6 0| 304 290 436
A5 X 4 8 0| 314 269 435
B1 X X 1 0 25 2.8 126
B2 X X 2 0| 205 206 398
B3 X X 4 0| 316 291 435
B4 X X 6 0 | 322 273 427
B5 X X 8§ 0| 325 260 421
B6 X X 10 0 | 322 242 414

Table 6. Ablation study on prompting SAM [25] with varying pos-
itive keypoints (@) on OCHuman-val. Best results for each metric
highlighted in bold; best method for BMP highlighted in blue .
Green text indicates improvement over the baseline, red text indi-
cates a decline. Detection and segmentation often conflict (Fig. 5).
More keypoints improve segmentation (including incorrect masks)
and bounding box detection, but increase segmentation errors.
Pose remains stable but suffers from both wrong segmentation
(guidance errors) and wrong detection (crop errors).

name ‘ batch bbox @ O ‘ bbox segm pose

RTMDet [22] + MaskPose ‘ 31,1 27.1 453

A3 X 4 4 0] 293 309 440
Cl1 X v 4 1] 295 305 443
C2 X v 4 3| 298 282 442
C3 v v 4 -] 293 309 440
B4 X X 6 0| 322 273 427
C4 X X 6 1| 299 238 436
C5 X X 6 3| 275 192 441
C6 v X 6 - | 322 273 427

Table 7. Ablation study on prompting SAM [25] with varying
negative keypoints (&) on OCHuman-val. Best results for each
metric in bold; best method for BMP highlighted in blue . Green
text indicates improvement over the baseline, red text indicates
a decline. Adding negative keypoints to bounding boxes hinders
segmentation but slightly improves detection. Without bounding
boxes, negative keypoints degrade both detection and segmenta-
tion. Processing all image instances simultaneously (batch) gives
the same or worse results.

In the top section, which includes bounding box
prompts, using more keypoints increases the likelihood of
confusing the model, leading to a drop in segmentation
quality. However, more keypoints also increase the chance
of expanding the mask beyond the bounding box, which im-
proves detection. In particular, using 8 keypoints as positive

prompts slightly outperforms the original baseline in detec-
tion.

The second section, without bounding box prompts,
highlights that too few keypoints fail to define the instance
adequately, causing both detection and segmentation to fail
catastrophically. The best segmentation results occur with 4
keypoints, while detection performs best with 8. We chose
6 keypoints as a middle ground, balancing strong detection
performance with slightly improved segmentation.

Number of negative keypoints (&). SAM?2 provides
two methods for negative prompting: explicit negative
prompts and batch processing of all instances in the image.
For explicit negative prompts, we identify the closest key-
point from other instances in the same image, provided it
has confidence above a specified threshold.

Tab. 7 evaluates the impact of negative keypoint prompts.
The top section examines adding negative prompts to 4
positive prompts and a bounding box. Negative prompts
slightly improve detection quality, but significantly reduce
segmentation quality. Given the trade-off, the decrease in
segmentation outweighs the minor improvement in detec-
tion, so we avoid using negative keypoints in this setup.

The bottom section evaluates the effect of negative
prompts without a bounding box prompting. Here, adding
negative keypoints decreases both detection and segmenta-
tion performance, making it ineffective for this configura-
tion.

Batch processing. Tab. 7 also evaluates the impact of
batch processing, where SAM is prompted with multiple
instances simultaneously. In this approach, SAM outputs
non-overlapping masks for each prompted instance, ensur-
ing that no mask is a subset of another. Although this be-
havior is logical, batch processing consistently produced the
same or slightly lower results compared to single-instance
processing in all our experiments.

We chose to stick with single-instance processing, as it
likely allows the model to optimize better for one instance
at a time, even if the resulting masks may overlap. Over-
laps could be resolved in a post-processing step using pose
information.

Confidence threshold (7;.). The top part of Tab. 8 ex-
amines the effect of varying the confidence threshold 7
for selecting keypoints as prompts. Lower thresholds select
keypoints with greater variability but increase the risk of
using incorrectly estimated keypoints. The best results are
achieved with a threshold of T, = 0.3, which aligns with its
common use in heatmap-based pose estimation models.

Interestingly, a lower threshold (7, = 0.1) outperforms
a higher threshold (7. = 0.8), suggesting that variability
is more important than strictly ensuring keypoint correct-
ness. This may indicate that SAM is either robust to incor-
rect prompts (which we find unlikely) or that confidence is
not a reliable metric for evaluating keypoint accuracy. As



name batch bbox @ © T. sel. ext.bbox P-Mc bboxbyloU ‘ bbox segm pose
RTMDet [22] + MaskPose | 311 271 453
Confidence threshold T,
D1 X X 6 0 08 c+d — X X 299 272 421
B4 X X 6 0 05 c+d — X X 322 273 427
D2 X X 6 0 04 c+d — X X 324 276 43.1
D3 X X 6 0 03 c+d — X X 32.7 279 433
D4 X X 6 0 02 c+d — X X 325 283 43.6
D5 X X 6 0 01 c+d — X X 325 282 43.6
Selection method
D3 X X 6 0 03 c+d — X X 32.7 279 433
El X X 6 0 03 c — X X 29.7 262 45.0
E2 X X 6 0 03 d — X X 346 206 36.8
Extended bounding box
F1 X v 4 0 03 c+d X X X 29.3 311 441
F2 X v 4 0 03 c+d v X X 29.7  31.0 44.1
Pose-Mask consistency
D3 X X 6 0 03 c+d — X X 32.7 279 433
Gl X X 6 0 03 c+d — 4 X 309 31.1 45.0
Bounding box by max_IoU
D3 X X 6 0 03 c+d — X X 32.7 279 433
F1 X 4 4 0 03 cHd X X X 293 311 441
H1 X Xv 6/4 0 03 c+d X X 4 29.7  30.1 439
Final methods
D3 X X 6 0 03 c+d — X X 32.7 279 433
1 X Xiv 6/4 0 05 c+d v v v 29.2  31.1 463

Table 8. Ablation study on prompting SAM [25] with varying confidence thresholds (1), keypoint selection methods (sel.), and additional
techniques on OCHuman-val. Best results for each metric in bold; best method for BMP highlighted in blue . Green text indicates

improvement over the baseline, red text indicates a decline. Final methods used in BBox-Mask-Pose are highlighted in green . Two
different methods used: one for the BMP loop, another for mask and pose refinement.

human pose estimation models are often overconfident, us-
ing self-estimated OKS from [13] could likely yield better
results than relying on confidence.

Selection method (sel.). We compare three methods
for selecting keypoints as prompts. The first method,
confidence-only (c), sorts keypoints by confidence and se-
lects the top N most confident ones. The second, distance-
only (d), selects the N keypoints farthest from the center of
the bounding box. The third method, described in Sec. 3.3,
combines confidence and distance (c+d).

The second part of Tab. 8 shows that combining con-
fidence and distance (c+d) outperforms either approach
alone, providing superior results.

Extending bounding box. Experiment F2 in Tab. 8 ex-
plores the idea of extending the bounding box when using it
for prompting. If selected keypoints fall outside the bound-
ing box, it is extended to include all prompt keypoints. This
ensures that no positive prompt lies outside the bounding

box.

The results show that extending the bounding box
slightly improves the detection accuracy while maintaining
segmentation and pose estimation performance when using
the bounding box. This approach is not applicable when
prompting without a bounding box.

Pose-Mask consistency (P-Mc). Experiment G1 in
Tab. 8 evaluates the effect of Pose-Mask Consistency (P-
Mc), as described in Sec. 3.3. P-Mc significantly improves
segmentation and pose estimation, but reduces detection
performance. As a result, it is highly effective for refining
masks and poses when the bounding box is approximately
correct but not suitable for use in the iterative BBox-Mask-
Pose loop.

Bounding box depending on max_IoU. The last exper-
iment (H1) involves prompting with a bounding box only
for instances with max_IoU > 0.5. The rationale is that
bounding boxes are typically accurate for isolated instances,



Figure 6. Multiple background instances may merge into a single
mask when no bounding box is provided as a prompt. The yellow
mask was refined and covers all spectators. Foreground instances
are omitted in the left image for clarity.

Left — RTMDet [22], right —- BMP.

where bounding box prompting improves results. However,
for highly overlapping instances, the bounding box is often
inaccurate and degrades detection performance. The results
of this experiment are in Tab. 8.

As expected, the results fall between always prompting
with bounding boxes and never using them. While this
approach significantly improves segmentation compared to
prompting without bounding boxes, the improvement in de-
tection over always prompting with bounding boxes is mi-
nor. A qualitative analysis reveals that this method is pri-
marily beneficial for low-resolution background instances,
such as spectators in sports images. Without bounding
box prompting, SAM often segments the entire background,
leading to inaccuracies. This phenomenon is not well cap-
tured in the evaluation, as background instances rarely have
pose annotations and have limited detection and segmenta-
tion labels. An example is shown in Fig. 6.

A.3. Summary

The ablation study on automated SAM prompting is exten-
sive and may seem overwhelming. To provide a clear sum-
mary, the last rows of Tab. 8 present two prompting methods
used in BBox-Mask-Pose (BMP).

D3: This method is used in the BMP loop to balance re-
fined masks with improved detection. It primarily enhances
detection accuracy while slightly improving segmentation.
Although it does not achieve the best standalone results, it
performs best when used within the closed BMP loop with
re-detections.

J1: This method is designed to refine masks and poses to
produce high-quality estimates. It is used, for instance, in
BMP ablations (Sec. 4.3) to loop SAM and MaskPose with-
out re-detection. It significantly improves segmentation and
pose estimation but is not part of the reported BMP results.
J1 could be applied after the BMP loop terminates to fur-
ther refine masks and bounding boxes, but we avoided this
because it introduces additional overhead by requiring ex-
tra SAM (and possibly MaskPose) iterations. While such
micro-loops and adjustments could further improve the re-
ported results, our focus is on maintaining clarity, showing

Table 9. Detection re- ‘ det AP ‘ mask AP
sults on CIHP [12].

BMP brings a small RTMDet-1 | 69.5 63.9
improvement; CIHP is BMP 1x 69.4 0.1 | 65.7+1.8

more similar to COCO BMP 2x 69.7 +0.2 | 65.9 +2.0
than to OCHuman.

that two simple loops are sufficient to improve detection,
segmentation, and pose estimation.

Pose estimation robustness. Pose estimation demon-
strates notable robustness to the quality of estimated masks.
MaskPose consistently produces accurate poses, even with
low-quality masks (e.g., experiment C5 in Tab. 7), and al-
most always outperforms the ViTPose [38] baseline con-
ditioned by the bounding box. However, achieving the
MaskPose-SAM-MaskPose self-improving loop requires
employing several hand-crafted tweaks. Among these, the
Pose-Mask Consistency, as used in experiment J1 in Tab. 8,
is particularly critical. Overall, BMP’s pose estimation ben-
efits more from refined detections and re-detection of back-
ground instances than from refining masks through SAM.
This highlights the importance of robust detection to im-
prove overall performance within the BMP framework.

B. Additional results

Tab. 9 shows results on CIHP dataset [12]. BMP is the most
effective in scenarios with max IoU between 0.5 and 1.0
(see also Tab. 3). The improvement in non-crowd scenes
(e.g. COCO) is negligible. Note that not all crowd datasets
are equal. COCO, CIHP and CrowdPose feature group pho-
tos with many bboxes tightly squeezed next to each other.
On the other hand, OCHuman and part of CIHP feature en-
tangled people with highly overlapping bboxes. BMP ex-
cels in the most difficult scenes with overlapping bboxes,
while not harming performance on group photos.

C. Failure cases analysis

Here, we provide a detailed analysis of BMP failure cases.
While the most common issues are discussed in the paper,
particularly in Sec. 5 and Fig. 4, this section offers addi-
tional examples and introduces a previously unmentioned
type of error, instance merging.

Merging instances. Even though BMP is designed to
decouple instances merged by the detector, and MaskPose
performs well in such cases, SAM can mistakenly merge in-
stances if it is incorrectly prompted or if the instances have
similar textures. Prominent examples of these failures are
shown in Fig. 7.

BMP struggles to address these issues because bound-
ing box prompting would also fail, given that the detected
bounding box already merges the instances. Furthermore,
Pose-Mask Consistency (P-Mc) does not help in such cases,
as only one instance is detected. Without negative key-



(b) Two boys in one (¢) Two players
pair of pants, wearing  with matching
matching shirts. jerseys.

(a) Two people in
matching coats.

Figure 7. Instances not split even after mask refinement by SAM
[25], typically due to similar or identical textures.

(@) (b)

Figure 8. Oversegmentation. Green instances have incorrect
masks — only the skin is segmented, excluding the clothes. This
issue commonly occurs with clothing that exposes bare shoulders,
such as dresses or jerseys. Keypoints used for SAM prompting are
marked (best viewed in zoom).

points, a large mask that merges multiple instances (or even
covers the entire image) would still achieve P — Mc¢ = 1.0,
since all positive keypoints fall within the mask and no neg-
ative keypoints are present to penalize the score.

Segmenting clothes instead of the whole person. This
issue, illustrated in Fig. 8, is particularly common in OCHu-
man, where many individuals wear specific clothing. The
problem frequently arises when a person has bare shoul-
ders, such as in an evening dress or basketball jersey. In
such cases, shoulder, facial, knee, elbow, and wrist key-
points, which are on the skin rather than clothing, prompt
SAM to segment only the skin, leaving the clothing un-
segmented. Hip and sometimes ankle keypoints could help
refine segmentation, but these are typically low-confidence
predictions and are often not selected.

Unsegmented clothing causes downstream issues as the
masking-out step leaves the clothes visible. In subsequent
BMP iterations, the detector identifies these as separate in-
stances, as shown in Fig. 4.

We suggest two potential solutions. The first is to im-
prove SAM prompting to include clothing in the segmenta-
tion. The bounding box prompt could address this specific

Figure 9. Images where SAM [25] successfully decoupled in-
stances but failed to segment a disconnected body part. These
parts remain unmasked and risk being re-detected, as illustrated
in Fig. 4c. Keypoints used for SAM prompting are marked (best
viewed in zoom).

case, but it hinders performance in other scenarios, as de-
tailed in Fig. 3b and Appendix A. The second is to fine-tune
the detector to ignore clothing when the skin is masked out.
However, this approach risks reducing the detector’s gener-
alizability and causing overfitting to scenarios with visible
skin and faces, which we believe is not a viable long-term
solution.

Missing body parts. When SAM fails to segment a
body part, it remains unmasked and may be redetected in
the next stage, as shown in Figs. 4 and 9. This issue is even
more pronounced when prompting with a bounding box, as
detected bounding boxes often exclude disconnected limbs,
leaving SAM unable to recover them. For this reason, we
avoid prompting with the bounding box in the BMP loop.

Missed limbs could potentially be addressed by better
alignment between pose and mask. If the refined mask is in-
consistent with the prompted pose, SAM could be restarted
with different prompts to minimize missed limbs. However,
if the limb is also missed by MaskPose, BMP cannot resolve
the issue.

Correct examples. BMP performs reliably in most
cases, as demonstrated by the quantitative results. Figs. 11
and 12 showcase examples of successful detection and seg-
mentation in challenging multi-body scenarios, including
cases where a person is upside down.

In particular, Fig. 11 highlights the ability of BMP to
balance segmentation and detection, as discussed in Fig. 5.
The improvements are significant, with more precise seg-
mentation and accurate instance counts in the scene. Some
small body parts may occasionally be assigned to the wrong
instance, but overall performance remains strong.
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Figure 10. MaskPose performance with different values of a.
Fine-tuning for 5 epochs on 10% of dataset, masks detected.

pose SAM pose loops ‘ bbox pose params
v v X 1x 31.1 453 225M
v v X 2% 321 48.6 369M
v v v 1x 31.1 464 312M
X 4 X 2x 319 473 282M
v X X 2x 30.8 47.0 201M

Table 10. Ablation study of BBox-Mask-Pose components eval-
uated on OCHuman-val. Bbox and pose evaluated with AP. The
sum of trainable parameters approximates computational com-
plexity. First row corresponds to BMP 1, second to BMP 2x.

D. Additional ablation Study

D.1. Semi-transparency for MaskPose

Fig. 10 shows preliminary experiments on the « values in
MaskPose. When o = 0, the model loses the background
context and becomes sensitive to detected mask quality. For
a € [0.2,0.8], the model combines the foreground and the
background and exhibits good and stable performance.

D.2. Number of parameters of BMP

Tab. 4 in Sec. 4.3 shows the performance change with and
without various BMP components. For clarity, we also
present Tab. 10, which shows the same result along with
the number of trainable parameters of the whole loop. For
example, combining the detector (RTMDet-1) with S7M pa-
rameters and the pose model (ViTPose-b) with 87M param-
eters results in 144M trainable parameters.

Omitting SAM from the loop significantly reduces pa-
rameters, but also sharply decreases performance. Run-
ning the pose estimation again after the SAM refinement
increases parameter usage by 40%, from 225M to 312M.

Figure 11. Images where BMP improves detection and segmen-
tation using its pose estimates and SAM prompting with selected
keypoint. Bounding box prompting did not lead to comparable re-
sults. Keypoints used for SAM prompting are marked (best viewed
in zoom). Left — RTMDet [22], right —- BMP.



Figure 12. Two iterations of BMP successfully decouple merged

instances, even in challenging images with upside-down people.

Left — RTMDet [22], right —- BMP. Figure 13. Qualitative results on the OCHuman dataset.
Left — RTMDet [22], right - BMP 2x.



Figure 14. More qualitative results on the OCHuman dataset.
Left — RTMDet [22], right - BMP 2x.
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