Appendix for
“Transparent Vision: A Theory of Hierarchical Invariant Representations”

Al. Historical Perspectives of Invariance

We provide some historical perspectives on the invariance
in the development of image representations. The quest for
invariance dates back to the gestation of computer vision
itself, spanning both hand-crafted and learning approaches
[31:

* In the hand-crafted approach, symmetry priors (e.g., in-
variance and equivariance) w.rt. geometric transforma-
tions (e.g., translation, rotation, and scaling) have been
recognized as main ideas in designing representations.
Such ideas cover almost all classical and state-of-the-art
methods, from global features (e.g., moment invariants
[25]), to local sparse features (e.g., SIFT [20]), and to lo-
cal dense features (e.g., DAISY [33]). However, these
hand-crafted representations are all fixed in design, rely-
ing on (under)-complete dictionaries, and therefore fail
to provide sufficient discriminability at larger scales, e.g.,
ImageNet classification task [28].

¢ In the learning approach, CNNs achieve over-complete
representations of strong discriminative power for larger-
scale vision tasks, through a cascade of learnable nonlin-
ear transformations. As a textbook view of deep learn-
ing, representations should be learned not designed [18].
Therefore, typical CNN representations are equipped
with very few symmetry priors, typically just transla-
tion equivariance [15], but has recently been proven to
no longer hold in deeper layers of the CNNs with down-
sampling structures [42]. In general, these learning rep-
resentations lack robustness and interpretability guaran-
tees, e.g., the presence and understanding of adversarial
perturbations [6], and therefore cannot be well extended
to trustworthy tasks [32].

Historically, to a certain extent, efforts at invariance
and discriminability have developed independently in hand-
crafted and learning approaches. The compatibility between
invariance and discriminability has emerged as a tricky
problem when moving towards trustworthy Al

A2. Related Works

In this section, we supplement the developmental efforts of
scattering and equivariant networks.

AZ2.1. Scattering Networks

Theoretical works further explored various geometric in-
variants [29], more general mathematical formulations [36],
and the potential for improving the efficiency, interpretabil-
ity, and robustness of state-of-the-art CNN techniques [24].
Regarding applications, they provided competitive results in
a variety of tasks on audio [1], image [5, 24, 29] and graph
[9] data, some of which are even interdisciplinary [10, 41].

A2.2. Equivariant Networks

Theoretical works further explored the equivariance for ro-
tation [12, 35, 38], flipping [12], scaling [30, 37], and their
combination [31] from various mathematical theories, in-
cluding steerable filters [12], harmonic analysis [38], scale
space [37], Lie groups [13], and B-spline interpolation [4].
Regarding applications, they played a key role in low-level
vision tasks [39], especially scientific discoveries with sym-
metry priors [2, 34].

A3. Foundations of Invariant Theory

Our work develops from the theory of moment invariants.
Therefore, we begin with a brief review on the foundations
of moment invariants, covering some concepts, notations,
and definitions.

A3.1. Global and Local Representations

In general, classical moments and moment invariants are
global representations of images, where the theory is built
on the following definition [25]:
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where f is the image function, V,,,, is the basis function
with order parameter (n,m) € Z? on domain D, and * is
the complex conjugate. Note that the domains of f and V,,,,
in (A1) have the same/similar location and scale, implying
the global nature of the representation information.

With the sparse prior and geometric prior for natural im-
ages, two typical constraints, i.e., orthogonality and rotation
invariance, often imposed on the explicit definition of Vi,



leading to the following polar form:

(fs Vam) = / R:(r) AL (0) f(r,0)rdrdd,  (A2)

where V., (r cos 0, 7 sin 0) = Vi, (r, 0) is separated as the
el
@ y
product of the angular basis function A,,(0) = exp(jmé)
(J = V/—1) and the radial basis function R, subject to

1
the weighted orthogonality condition | R, (r)R}, (r)rdr =
0

50 . Note that the basis function V., = Ry, A, in (A2)
is orthogonal on D, and the magnitude of {f, V,,,,,) is invari-
ant to the rotation on the image f (see [25] for a survey).

In our recent work, moments and moment invariants are
extended to local representations of images, where the the-
ory is built on the following definition [26]:

where the new basis function V,*»* introduces position pa-
rameters (u, v) and scale parameter w. It can be interpreted
as a translated and scaled version of the global V,,,, with
the following coordinate relationship:
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where the domain is a disk centered at (v, v) and with radius
w: D = {(x,y) : (x —u)?+ (y —v)? < w?}. Note that
(A3) allows the domain of V,»”" to be built in different po-
sitions and scales w.r.t. the domain of f, implying the local
nature of the representation information. Also, the classical
definition (A2) is in fact a special case of the new definition
(A3) with (u,v) = (0,0) and w = 1 (see [26] for details).

A3.2. Invariance, Equivariance, and Covariance

The terms of invariance, equivariance, and covariance ap-
pear in the fields of computer vision, graphics, geometry,
and physics. We use the following identities to generally
denote such terms [19, 22]:

¢ invariance — R(D(f)) = R(f).

* equivariance — R(D(f)) = D(R(f)),

¢ covariance — R(D(f)) = D' (R(f)),

where R is a representation, D is a degradation, and D’ is
a composite function of D. Note that invariance and equiv-
ariance are special cases of covariance with D’ = id and
D' =D.

Starting from the local representation (A3), one can ver-
ify that (f, V,“*) exhibits the following properties w.r1.
translation, rotation, flipping, and scaling on images (see
[26] for details).

The image translation leads to
(f(z+ Az, y + Ay), V¥ (2, y))
= (S, ), Visranwsane (g g)),

where (Az, Ay) is the translation offset of the image f.
Note that the same (Az, Ay) appears in position parame-
ters (u, v), implying the equivariance w.r.t. the image trans-
lation.

Since the translation equivariance holds, the following
analysis (A6) ~ (A8) will consider only center-aligned ge-
ometric transformations, i.e., we can restrict (u,v) = (0,0)
without loss of generality.

The image rotation leads to

(f(r,0+ ), Vi (r',0")
= (f(r,0), Vi (1, 6") A5, (=),

with (u,v) = (0,0), where ¢ is the rotation angle w.r.z.
the center of the image f. Note that the same ¢ appears
in the phase of the representation, implying the covariance
w.r.t. the center-aligned rotation. It is straightforward that
the covariance (A3) will specialize to the invariance when
taking the magnitude as | (f(r,0 + ¢), V;A2w(r',0")) | =
[ (f(r, 0), Vi (r', 0)) |.
The image flipping leads to

<f(’l", 79)’ Vn’l,trlr)Lw (Tlv 9l)>
= (<f(7“, 9)) V#;)lw(,,,/’ 9/)>)*,

with (u,v) = (0,0), where f(r, —0) is a vertically flipped
version of the image f w.r.t. the center. Note that center-
aligned vertical flipping again only affects the phase of the
representation, implying the covariance similar to (A6). As
for other flipping orientations, the same conclusion can be
derived from the composite of rotation and vertical flip-
ping. It is straightforward that the joint invariance of center-
aligned rotation and flipping holds when taking the magni-
tude of the representation.
The image scaling leads to

(F(sz,sy), Vi (,y)
= (f(@.9), Vil w,9) )

with (u,v) = (0,0), where s is the scaling factor w.r.z. the
center of the image f. Note that the same s appears in the
scale parameter w, implying the covariance w.r.f. center-
aligned scaling.

For the representation properties when (u,v) # (0,0),
they can be derived from the composite of translation with
center-aligned rotation, flipping, and scaling, respectively.
Hence, the magnitude of the representation has joint equiv-
ariance for any translation, rotation, and flipping on (u, v)
domain, as well as covariance for any scaling on w domain.

(AS5)

(A6)

(AT)

(A8)



A4. Proofs

A4.1. Equivariance Properties

Proof. First, let us examine the behavior of a representation
unit U on &;:

U(giM) =PoSoC(g1 M)
=PoSog|C(M)
=Pog;SoC(M)
— giPoS o C(M)
=g U(M),

where the first pass comes from the covariance of C for rota-
tion and flipping, i.e., (A6) and (A7), and g] is a predictable
operation acting in the phase domain of C(M); the second
pass comes from the specialization of S to the covariant g} —
the magnitude operation removes the extra phase variations,
leading to a pure equivariance g;; the third pass comes from
the identity function of P, which becomes approximately
equal when the downsampled P is used.

Here, U(gy M) = g1 U(M) means that the representation
unit U can be considered as an equivariant layer for any
g1 € 6, and M € X — in other words, the single U and
g1 operations on M € X are exchangeable. Furthermore,
with a notation M[l] = U[l] o0---0 U[l] (M) = U[Z]M[l—l]’
we have M € X forany ! € {1,2,---, L}. Therefore, g;
and any composition of U are exchangeable, implying the
correctness of Property 1. O

(A9)

A4.2. Covariance Properties

Proof. First, let us examine the behavior of a representation
unit UY on By:
U*(g2M) =PoSoC*(g2M
=PoSogyC¥(M
=PoSog,C" (M)
=PogsSoC¥ (M)
= gaPoSoC¥ (M)
= g2U"* (M)
= g, U (M),

)
)

(A10)

where the first pass comes from the covariance of C for scal-
ing, i.e., (A8), and g} is a predictable operation acting in
both the €2 domain (i.e., the same scaling g-) and the w do-
main (i.e., the factor s) of C*(M); the second and third
passes come from the element-wise act of S and the identity
function of PP, respectively.

Here, U* (g2 M) = g4U" (M) means that the represen-
tation unit U" can be considered as an covariant layer for
any g2 € 6B and M € X - in other words, the single
U™ and go operations on M € X are exchangeable but
with the parameter changing of ws. Furthermore, we have

My € X forany [ € {1,2,---,L}. Therefore, go and
any composition of U" are exchangeable while changing
the scale parameter to ws, implying the correctness of Prop-
erty 2. O

A4.3. Invariance Properties

Proof. We can rewrite I(gy M)z as:

]I(gOM)[L] =1Io U[L] 0--+0 U[g] o U[l] (gOM)
= I(goUz) o -+ 0 Upg o Uy (M)
=ToUpyo---oUyg oUp (M)

(Al1)

where the first pass comes from Properties 1 and 2, note
that go € &y C &, X By, g is related to g; and g; the
second pass comes from our assumption I(gyM) = I(M)
for any go € & and M € X, with M € X forany [ €
{1,2,---, L}. Therefore, I(goM)[z) = IM[z), implying
the correctness of Property 3. O

AS. Theoretical Comparisons

It is necessary to highlight the theoretical relationships with
typical related works:

* Traditional Invariants: Our work generalizes this the-
ory by unifying the global and local invariant representa-
tions into a new framework of HIR. More specifically, we
formalize layers C, S, and [P based on the theory of lo-
cal invariants [26] (Definitions 1 ~ 3), arguing the equiv-
ariance/covariance can be preserved across layers under
a certain cascade (Properties 1 ~ 2). We also formalize
layer I based on the theory of global invariants [25] (Def-
inition 4), arguing the successes of global invariance for
image domains can be directly generalized to equivari-
ant/covariant deep feature domains (Property 3). Under
our hierarchical invariance, classical global [25] and lo-
cal [26] invariants can be considered as special cases, i.e.,
IfandI oS o Cf (Definition 5).

* Traditional CNNs: Our work has a similar hierarchi-
cal architecture but with better properties in geometric
symmetry, allowing for robust and interpretable image
representations. More specifically, we introduce the dis-
criminative design of CNNSs in our invariants, i.e., over-
complete representation with deep cascading [42]. On the
other hand, we criticize typical CNN modules (Formula-
tion 1), allowing fully transparent geometric symmetries
across layers of our representation (Properties 1 ~ 3). As
a result, the proposed representation serves as an effective
alternative to the highly black-box CNNs in trustworthy
tasks.

* Scattering Networks: Our work is more compact in
achieving rotation invariance. As a main competitor,
scattering networks are also based on deep cascading of



explicit transforms (wavelets) [5], with similar concepts
to our work. However, constructing rotation invariants
from scattering networks is complicated, which requires
parallel convolution and cross-channel pooling of mul-
tiple oriented wavelets; increasing the orientation sam-
pling will result in an exponential growth of the complex-
ity. Whereas our approach benefits from classical invari-
ant theory, rotation invariance is continuous and one-shot
(Property 1), providing better efficiency while easily en-
larging the network size to improve the representation ca-
pacity.

¢ Equivariant Networks: Our work is non-learning while
being more compact in achieving continuous and joint
invariance. As a secondary competitor, equivariant net-
works are also guaranteed by group theory [11], with
similar concepts to our work. However, the convolu-
tional layers in equivariant networks are learned, lead-
ing to varying degrees of data dependence. In particular,
it has a similar parallel structure to scattering networks,
leading to exponential complexity and optimization chal-
lenges. Although equivariant networks are a very generic
design, our approach provides better efficiency for contin-
uous and joint invariance (Properties 1 ~ 3), while easily
enlarging the network size to improve the representation
capacity.

A6. Practical Details

In this section, we discuss more practical details on numer-
ical implementations, network parameters, layer settings.

A6.1. Fast and Accurate Implementation

We will complement the numerical implementation of HIR,
especially the fast and accurate computations of Definition
1 from our previous work [26]. Note that the discussion
here is very general, with no restrictions on the specific def-
initions of the basis functions.

Definition (Fast Implementation). Let us introduce the con-
volution theorem as a fast implementation of Definition 1,
such that the spatial domain convolution of (A9) can be
converted to the following frequency domain product form
[26]:

CM = F~(F(M(i, js k) © F((H (6,4)7)), (A12)

where F' is the Fourier transform and © is the point-wise
multiplication.

Property (Complexity Analysis). In Definition 1, the (1)
dominates the computational complexity due to the dense
convolution.  For the input feature map M (i,j; k) with
Q={1,2,-,N;} x {1,2,--+ ,N;} and H = €&, we
assume that a set of CM needs to be computed, where the
scale parameter w € Sy, with a fixed order (n,m) and

a fixed channel k, and denote the number of feature map
samples as N;; = N;N; and the number of scale sam-
ples as Ny, = |Sy|. With the above definition and the
Fast Fourier Transform (FFT), we can compute the set of
CM in O(NyN;j;log N;;) multiplications, as opposed to
the complexity of O(Ny N;jwmax>) by the direct Definition
1, where Wmax 1S the maximum scale in S,,. Note that the
big difference between square and logarithmic growths in
the complexity (removing the same terms), where the above
definition will exhibit batter efficiency when wyax is suffi-
ciently large such that Wmay> > log Nj.

Definition (Accurate Implementation). Let us introduce the
higher-order numerical integration as an accurate imple-
mentation of Definition 1, such that the two-dimensional
continuous integral of (3) can be converted to the follow-
ing summation form [26]:
)~ Y Vil w) St A
(a,b)ESqp

where the set of numerical integration samples S, encodes
the points (zq,ys) € D;j and the corresponding weights
Cab, Which are specified by a certain numerical integration
strategy, such as Gaussian quadrature.

Property (Accurate Analysis). In Definition 1, (3) domi-
nates the computational accuracy due to the continuous in-
tegration of complicated functions. We assume that hv""
with a fixed order (n,m) and position (u,v) needs to be
computed, and denote the number of numerical integra-
tion samples as Ngp = |Sap|. The implementation based
on the above definition exhibits an approximation error of
O((%)N‘“’“). Note that when there is more than one
sample within each pixel region, i.e., Ng, > 1, the above
definition will exhibit batter accuracy than the error of
O( (%)2) by the direct Definition 1 (zero-order approxi-
mation).

A6.2. Parameters of Single-scale Networks

Here, the order parameter (n, m) of the previous unit (blue)
is always smaller than that of the subsequent ones (under a
specific norm), so that the path exhibits an increasing trend
in the order. With this design, the main information can
be passed through the early nodes, and hence the subse-
quent nodes capture rich features. Also, the identity func-
tion (black) is introduced as a skip-connection trick, allow-
ing the information to be passed to deeper nodes. In this pa-
per, all units from the same level [ are specified separately
from the set {(n,m) : n+m = I, (n,m) € N2}, i.e., their
orders are equal under the #; norm.

A6.3. Radial Basis Functions

In our previous work [27], two generic classes of radial ba-
sis functions have been introduced, based on a family of



harmonic functions:

O[T‘o‘_2

2

R, (a,r) = exp(j2nmr®), (A14)

and a family of polynomial functions:

Re (g ) =) STt = )" Hp + 20)T (g + !
n\P &7 = 27rF(p+n)F( qurnJrl)

Z p+n+k)
k' (g + k)

(A15)

respectively, where the fractional parameter o € R™, the
polynomial parameters p,q € R must fulfill p — ¢ > —1
and ¢ > 0. Both classes of functions can be used to define
R, in the (A2), satisfying the orthogonality condition.

For the sake of simplicity, a family of cosine functions
are chosen in all experiments and applications, as a special
case of the (A14):

ﬁ n=>0
Rn = s Al6
(r) \/%cos(nmj) n>0 (A16)

i.e., forming a hierarchical invariant version of the Polar Co-
sine Transform (PCT) [40]. Note that we try to show the su-
periority of the hierarchical invariant framework itself, even
if relying on naive (A16).

A6.4. Invariant Layer

In the monograph [14] and our previous work [25], a num-
ber of strategies for directly constructing global invariants
in image domains have been presented. They can be nat-
urally used to define Z in (6), with the equivariant or co-
variant behavior of deep feature maps (Properties 1 ~ 3).
In all experiments and applications of this paper, a class of
global invariants is concisely designed based on frequency
pooling.

Regarding (6), we first let the Fourier basis be
Viam (24, y;). Note that the Fourier Transform (FT) is highly
understood in the signal processing community and can be
considered a good foundation for interpretability. Then,
based on the order/frequency sampling of the FT (n,m) €
[~ K, K]?, we define T as a frequency-band integral in the
polar system:

I({(M, Vam)}) £
Z (M, Vo) [} 18 = 1,2, #5

(n,m)eB; A17)
where B; = {(n,m) : VZK (i — 1)/#5| < |[(n,m)]l2 <
V2Ki /#p} is the i-th frequency band under the ¢5 norm,
with the number of bands #p.

Here, we can state that the above feature vector {I; :
i = 1,2,...,#p} directly satisfies the invariance for &1,
in light of Property 1 and the translation, rotation and flip-
ping properties of FT. As for scaling, Z is compatible with
both single-scale and multi-scale networks: 1) regarding the
single-scale case, a certain degree of robustness is provided
for &4 (at least up to the bandwidth), in light of Property
2 and the scaling property of FT; 2) regarding the multi-
scale case, the scaling covariance has been eliminated be-
fore feeding into Z, and thus will satisfy the joint invariance
for Qﬁo = 61 X 62.

Note that the well-known average pooling is in fact a
special case of (Al17), with K = 0 and #p = 1. Our
frequency-band integral Z can be regarded as a generic de-
sign of global pooling, with comprehensive consideration
on interpretability, invariance, and discriminability.

A7. Implementation Details
ments/Applications

of Experi-

All experiments/applications are executed in Matlab
R2023a under Microsoft Windows environment, based on
2.90-GHz CPU, RTX-3060 GPU, and 16-GB RAM.

Experiment: Our HIR is implemented here as a single-
scale network, where scale parameter w = 10 and compo-
sition length L = 6; its invariant layer (A17) is specialized
to the average pooling, with K = 0 and #p = 1, for a fair
comparison with the deep representations by average pool-
ing. Note that the adaptability strategies of Section 3.2 are
not employed here, for a direct assessment of its discrimina-
tive power. All features are fed into a PCA classifier, trained
on features of the training set. Unless otherwise stated, the
training and testing sets are formed without any crossover
by random sampling at 80% and 20% ratios on the original
dataset, respectively.

Application: Our HIR is implemented here as a single-
scale network, where scale parameter w = 10 and compo-
sition length L = 7; its invariant layer (A17) is specialized
with K = N /2 and #p = 30, for improving the dis-
criminability of digital artifacts. Note that the feature/ar-
chitecture selection strategy of Section 3.2 is employed for
data adaptability and discriminability, where the top-ranked
500- and 1000-dimensional features are selected for AIGC
and adversarial perturbation, respectively. All features are
fed into both NN and SVM classifiers, for evaluating the
sensitivity w.r.t. the classifier. Unless otherwise stated, the
training and testing sets are formed without any crossover
by random sampling at 50% and 50% ratios on the original
dataset, respectively.



Table Al. Classification scores (%) and runtime (second) for dif-
ferent representations on a small-scale texture benchmark.

Time Original Orien. & Flip.
Method " Gpyt  Pre. Rec. FI  Pre. Rec. FI
Classical:
Cosine 5 70.74 6750 66.85 69.65 6625 6530
Wavelet 6 69.43 6438 64.68 62.34 58.13 57.82
Kraw. 5 70.67 67.50 66.30 6441 60.00 59.55
Learning:

SimpleNet 52 7033 67.50 67.09 54.63 43.13 4131
SimpleNet+ 521 4693 4938 46.06 47.18 48.13 4493
AlexNet 421 98.82 9875 9875 91.69 91.25 91.28
AlexNet+ 417 87.61 8438 84.05 8837 8563 8576
VGGNet 2667  99.41 9938 99.37 92.18 9125 91.37
VGGNet+ 6091  91.34 90.00 89.81 92.15 9125 91.08

Invariant:
ScatterNet 42 98.89 98.75 98.75 8498 83.13 83.08
HIR 27 96.98 96.88 96.87 9632 96.25 96.23

AS8. Supplementary Experiments/Applications

A8.1. Texture Experiments

As shown in Fig. 4, the experiment is executed on dataset
KTH-TIPS', a typical benchmark for texture image classi-
fication. This dataset has 10 classes, each containing 81
instances, the total size is 10 x 81 = 810, and hence is
considered as a small-scale vision problem.

As shown in Table Al, we list performance scores of
the competing representations on this benchmark, as well
as the elapsed time, i.e., CPU featuring time or GPU train-
ing time. Besides this direct protocol on the original dataset,
we also consider testing image variants with random orien-
tation (w.rt. {0,90, 180,270} degree) or flipping (w.r.t. x
or ¥ axis).

e The classical (over-)complete representations fail to
achieve a satisfactory level of discriminability, even in the
direct protocol of such small-scale benchmark.

e The learning CNN family achieves significantly higher
scores due to its over-complete and data-adaptive prop-
erties, especially the AlexNet and VGGNet with large-
scale pre-training and transfer learning. Whereas, the
SimpleNet performs relatively poorly, indicating the sen-
sitivity of learning to network size and training strat-
egy. Under the variant protocol, they exhibit a significant
performance degradation, suggesting the learned features
lack invariance w.r.f. natural geometric variations of tex-
ture. After introducing the augmented training, the CNN
scores become more stable, but at the cost of discrim-
inability. A potential reason for this phenomenon is the
small amount of training data. Moreover, the computa-
tional cost is considerable for this small-scale problem,
and a certain training instability is observed.

Uhttps://www.csc kth.se/cvap/databases/kth-tips/index.html

Table A2. Classification scores (%) and runtime (second, for
train./test. = 8/2) for different representations on a large-scale par-
asite benchmark.

Time Train./Test. = 8/2 Train./Test. = 1/9

Method " Gpyt Pre. Rec. FI  Pre. Rec. FI

Classical:

Cosine 37 36.19 3260 29.85 4940 4197 43.80
Wavelet 39 41.68 4520 41.79 53.69 4797 49.27
Kraw. 42 66.56 6949 6721 71.60 57.88 61.10

Learning:
SimpleNet 2244+ 90.15 89.25 89.65 84.51 76.14 78.84

AlexNet 17961 98.87 98.40 98.63 9592 94.69 95.27
VGGNet 91841 99.24 9897 99.11 9795 9737 97.65

Invariant:
ScatterNet 1277  68.41 69.71 67.55 7252 6330 65.70
HIR 823 88.73 92.18 90.10 91.26 88.76 89.85

* The scattering networks provide a high level of discrim-
inability and robustness without feature training and data
augmentation, indicating the success of extending classi-
cal wavelets to deep representations.

* Our work further extends such success: the HIR achieves
a similar level of discriminability as the learning CNN
family, while exhibiting superior robustness in the variant
protocol than all competing representations. In particu-
lar, such representation success build on our compact and
efficient framework, with lower runtimes than scattering
networks and learning CNN family.

A8.2. Parasite Experiments

As shown in Fig. 4, the experiment is executed on micro-

graphic dataset’, a typical benchmark for parasite image

classification. This dataset has 6 parasite classes and 2 host
classes, with real-world diversity regarding imaging, back-

ground, morphology, and geometry, the total size is 34298,

and hence is considered as a large-scale vision problem.

As shown in Table A2, we list performance scores and
elapsed times of the competing representations on this
benchmark. Note that we also consider a protocol with dif-
ferent training-testing ratios to analyze the data dependence
and sample efficiency.

* In this large-scale problem, the scores of the classical
representations drop further, implying a limited level of
discriminability. On the other hand, their performance is
relatively stable when training samples are reduced, and
even better in the 1/9 case, indicating a good efficiency.

* In the learning CNN family, the direct-learning Sim-
pleNet exhibits a clear data dependence. Specifically, it
achieves ~90% scores in the 8/2 case (similar to HIR),
while the scores drop significantly in the 1/9 case (below
than HIR). In contrast, the AlexNet and VGGNet achieve

Zhttps://data.mendeley.com/datasets/38jtn4nzs6/3
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Figure Al. A comparison of adversarial perturbation forensic
scores (F1, %) w.r.t. current forensic solutions on the UP bench-
mark.

good discriminability and stability in the 1/9 case, reveal-
ing that the transfer strategy effectively inherits the pre-
training prior on ImageNet. On the other hand, the cost
of pre-training and transfer learning is still considerable,
without guaranteed robustness or adaptability for a given
data domain.

» Despite outperforming the original wavelets, scattering
networks fail to provide a competitive discriminability
in the era of deep learning. Here, the common failure
of such hand-crafted representations on larger-scale dis-
criminability can be regarded as important evidence for
our motivation.

* The HIR achieves a SimpleNet-level discriminability,
outperforming our competitor scattering networks signif-
icantly. Also, the HIR is not sensitive to the reduction of
training samples, outperforming the learning CNN fam-
ily in data dependence and sample efficiency. Note that
the discriminability of the fixed features from HIR is
still lower than the transfer learning with large-scale pre-
training. Therefore, in the next applications, the HIR fea-
tures will be empowered with data adaptability strategies
in Section 3.2.

A8.3. Adversarial Perturbation Forensic Applica-
tions

As shown in Fig. 5, the dataset ImageNet’ is perturbed
through 6 adversarial methods®, i.e., BIM [17], CW [7],
Damage [8], FGSM [16], PGD [21], and UP [23], respec-
tively, resulting in 6 benchmarks, each containing 5000
clean images and 5000 perturbed versions. This task ex-
hibits real-world discriminative challenges, in light of the
rich variability of the perturbations themselves and the un-
derlying ImageNet.

In Fig. A1, we first provide a comparison with the cur-
rent solutions of perturbation forensics on the basic and re-
alistic UP benchmark. Despite the fixed perturbation pat-
tern, there are still competing methods failing to achieve
good scores. Such methods are with under-complete repre-

3https://www.image-net.org/
“https://github.com/Harry24k/adversarial-attacks-pytorch

Table A3. Adversarial perturbation forensic scores (F1, %) for
different representations w.rt. various types of perturbations.

Method BIM CW DAmage FGSM PGD UP AVG MIN

Classical:

Cosine NN 34.63 33.19 90.78 39.80 34.69 222 3922 222
Cosine SVM 79.57 8334  97.26 78.24 7922 96.68 8572 7824
Wavelet NN 0.00  0.00 0.00 0.00 0.00  0.00 0.00 0.00
Wavelet SVM  72.83  82.09 97.77 7821 71.80 95.87 83.10 71.80

Kraw. NN 66.43  66.49 90.86 6643 6644 0.00 5944 0.00
Kraw. SVM 0.00 55.87 0.00 56.44  0.00 7037 3045 0.00

Learning:
SimpleNet 424 324 92.13 49.89 33.13 99.86 47.08 3.24
AlexNet 90.20 7272 96.63 94.61 9091 9845 90.59 72.72

VGGNet 96.04  62.50 99.08 98.12  96.99 99.15 91.98 62.50
GoogLeNet 90.29  80.04 97.09 9529 89.94 9875 9190 80.04
ResNet 90.22  75.59 97.35 94.66 90.17 98.40 91.07 7559
DenseNet 98.93  90.19 99.34 99.23 9885 99.76 97.72 90.19
InceptionNet 98.70 85.14 97.38 97.32  98.66 99.41 96.10 85.14
MobileNet 92.51 82.67 97.37 96.81  92.10 98.19 9327 82.67

Invariant:

ScatterNet NN 81.30  70.23 95.27 91.17 82.65 94.64 8588 7023
ScatterNet SVM  84.40  69.49 96.77 90.57 8386 95.12 86.70 69.49
HIR NN 89.66 84.92 98.89 93.26  90.08 97.78 9243 84.92
HIR SVM 9230 89.10 99.30 9596 91.60 98.93 9453 89.10

sentations, and thereby unable to comprehensively capture
perturbation patterns. In contrast, over-complete arXiv’23
and our HIR all achieve > 90% scores, further revealing the
fundamental role of representation in forensic tasks. Thus,
we will next further compare relevant representation strate-
gies.

In Table A3, we train and test all representations on the
6 benchmarks, presenting the corresponding F1 scores, as
well as the average and worst score statistics. This protocol
exhibits richer intra-class variability over the fixed pertur-
bation.

* The frequency difference between natural and perturbed
data is a fruitful forensic clue. Therefore, the classical
(time)-frequency representations achieve higher scores
than generally expected on this large-scale problem.
However, such features exhibit significant sensitivity to
classifiers. A potential reason is the restricted separabil-
ity, where one must resort to complex classification strate-
gies in the feature space.

* In the learning CNN family, all large-scale networks ex-
hibit > 90% average scores, especially DenseNet and In-
ceptionNet. The phenomenon suggests that the transfer
learning is good at capturing discriminative features with
sufficient training data and aligned testing protocol. As
for the attacks, the CW is more challenging and domi-
nates the worst scores, mainly due to its variable and weak
patterns.

* The scattering networks achieve similar scores and much
better classifier stability than the original wavelets, sug-
gesting an improvement in the separability. However, its
average scores did not reach 90%, failing to provide a
similar level of discriminability as learning CNNs.

* Our HIR is very robust to classifier changes, also achiev-
ing a MobileNet-level of discriminability, slightly lower



Table A4. Adversarial perturbation forensic scores (%) for differ-
ent representations on a real-world (hybrid) benchmark.

Train./Test. = 5/5

Train./Test. = 1/9

to guarantee their validity for under-sampled perturbation
patterns.

The scattering networks basically continue the discrim-
inability level and classifier stability from Table A3. Note
that its scores in the 1/9 case are higher than most clas-
sical and learning representations, reflecting the superior
performance in both discriminability and efficiency.

In this challenging protocol, the hand-crafted HIR still
achieves a learning-level discriminability and consis-
tently outperforms scattering networks. More impor-
tantly, our HIR is significantly less dependent on training
samples than learning CNNs, meaning it can better cope
with under-sampled perturbation patterns in practice. For
the AIGC forensic task, the comprehensive advantages
of HIR over learning CNNs will be further highlighted,
in robustness, interpretability, discriminability, and effi-

Method Pre. Rec. F1 Pre. Rec. F1

Classical:

Cosine NN 0.00 0.00 000 0.00 000 0.00
Cosine SVM  79.08 73.33 76.10 81.13 68.79 74.45
Wavelet NN 0.00 0.00 000 0.00 000 0.00

Wavelet SVM  77.53 6695 71.85 76.05 61.13 67.78

Kraw. NN 50.53 15.22 2340 50.00 15.10 23.20
Kraw. SVM  50.03 6534 56.67 49.75 48.77 49.26

Learning:

SimpleNet 4731 4811 4771 5059 63.63 56.36
AlexNet 81.46 8735 8430 7224 6136 66.35
VGGNet 81.41 90.04 8551 7883 7535 77.05

GoogLeNet 8274 8546 84.08 6335 57.74 60.42
ResNet 80.93 84.70 82777 6848 66.64 67.55
DenseNet 87.92 9325 9051 82.07 8396 83.00

InceptionNet  84.60 9092 87.65 69.58 70.77 70.17

MobileNet 83.07 88.07 8550 68.73 69.50 69.11
Invariant:

Scatter. NN 69.85 68.94 6939 7493 7731 76.10
Scatter. SVM  75.70 72.07 73.84 76.42 78.63 77.51

HIR NN 81.27 80.68 8098 79.09 82.17 80.60

HIR SVM 86.20 86.06 86.13 8342 8329 83.35

than DenseNet and InceptionNet, and significantly better
than the direct competitor scattering networks. Therefore,
our strategy has a better combined performance in robust-
ness, interpretability, and discriminability. Its efficiency
benefit will be highlighted in the next experimental pro-
tocol.

In Table A4, we train and test all representations on a hy-

brid of the 6 perturbation benchmarks, presenting scores at
two training-testing ratios. This protocol is more challeng-
ing due to very complex intra-class variability, while being
more practical for real-world forensic scenarios.

In line with previous observations, the classical represen-
tations still exhibit score fluctuations on the two classi-
fiers. We also note a performance degradation compared
to the case of Table A3, due to the discriminative chal-
lenges by this hybrid protocol. On the other hand, their
performance is stable w.rt. the reduction of training sam-
ples, further validating the inherent advantages in sample
efficiency.

Moving into this hybrid benchmark, the learning CNN
family yields consistent and large performance degrada-
tion, especially for the 1/9 case with fewer samples. This
phenomenon is direct evidence for the data dependence in
learning representations (even with transfer strategy). In
fact, real-world forensics often face the situation where
the perturbation types are diverse and some of them lack
samples. Therefore, such data-dependent forensics typi-
cally exhibit time-consuming (re-)training, while failing

ciency.
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