
PriorMotion: Generative Class-Agnostic Motion Prediction with Raster-Vector
Motion Field Priors

Supplementary Material

1. More Details about Model Designs

We present more detailed model designs here. The de-
tailed model architecture of different modules is shown in
Sec. 3.2.2 and Sec. 3.2.3.

1.1. RVpE

Sinusoidal embeddings. This embedding method effec-
tively captures the positional information of each grid cell,
providing a rich and continuous representation that is in-
variant to the absolute position but sensitive to the relative
distances between coordinates. The sinusoidal embedding
for a coordinate p and dimension j is given by:

E(p, 2j) = sin
( p

T 2j/d

)
, E(p, 2j + 1) = cos

( p

T 2j/d

)
(A.1)

where T is the scaling factor, typically set to 1000, and d is
the total dimension of the embedding.

Motion vector encoding. To effectively capture both the
temporal dynamics and the spatial characteristics of the in-
stances, this module is designed to encode the motion be-
haviors of individual instances, such as vehicles and pedes-
trians. This module combines a Long Short-Term Mem-
ory (LSTM) network with a Multi-Layer Perceptron (MLP)
to capture both temporal and spatial features. The LSTM
network processes the sequential features of each instance,
while the MLP further refines these features to produce a
compact and meaningful representation.

Mathematically, the process can be described as (A.2-
A.6). Let xt be the input feature vector at time step t. The
LSTM network updates its hidden state ht and cell state ct
as follows:

it = σ(Wixt +Uiht−1 + bi) (A.2)
ft = σ(Wfxt +Ufht−1 + bf ) (A.3)
ct = ft ⊙ ct−1 + it ⊙ tanh(Wcxt +Ucht−1 + bc)

(A.4)

ot = σ(Woxt +Uoht−1 + bo) (A.5)
ht = ot ⊙ tanh(ct) (A.6)

where σ is the sigmoid activation function, ⊙ denotes
element-wise multiplication, and W, U, and b are the
weight matrices and bias vectors, respectively.

The output of the LSTM, ht, is then fed into an 3-layers

MLP to further refine the features (A.7)-(A.9).

z1 = ϕ(W1ht + b1) (A.7)
z2 = ϕ(W2z1 + b2) (A.8)

...
yt = WLzL−1 + bL (A.9)

where ϕ is the activation function used in the hidden layers,
and yt is the final refined feature vector.

Attention mechanism in VpE. The Transformer En-
coder is responsible for capturing the temporal and spatial
dependencies in the embedding instance sequences. The
self-attention mechanism is designed to capture the interac-
tions within the input sequence. It uses a hidden dimension
of 256, 4 attention heads, and 6 layers. Each layer of the
self-attention mechanism includes a multi-head attention
module and a feed-forward network with a hidden dimen-
sion of 256 and a dropout rate of 0.1. The cross-attention
mechanism is designed to capture the interactions between
the input sequence and the BEV features. It also uses a hid-
den dimension of 256 and 4 attention heads. A multi-head
attention module and a feed-forward network are used with
a hidden dimension of 1024 and a dropout rate of 0.1.

Rasterized prior encoding. The rasterized prior encod-
ing module is designed to encode the grid-based repre-
sentation of the environment using a self-attention mech-
anism(shown in Fig.A.1). For temporal self-attention, the
input tensor has dimensions [B, T,H,W,C], where B is
the batch size, T is the number of time steps, H and W are
the height and width of the grid, and C is the number of
input channels. A 1x1 convolutional layer reduces the num-
ber of input channels to C ′. The query (Q), key (K), and
value (V ) matrices are then projected from this transformed
tensor, reshaped into [B, THW,C ′], and processed through
the scaled dot-product attention mechanism(A.10)-(A.17):

Q = Conv1x1(X) ∈ RB×T×H×W×C′
, (A.10)

K = Conv1x1(X) ∈ RB×T×H×W×C′
, (A.11)

V = Conv1x1(X) ∈ RB×T×H×W×C′
, (A.12)

Q′ = reshape(Q) ∈ RB×THW×C′
, (A.13)

K ′ = reshape(K) ∈ RB×THW×C′
, (A.14)



Conv1x1

q

k

v
Conv1x1

Conv1x1

softmax

Conv1x1

[N,H,W,C]

[N,H,W,C’]

[N,C’,HW]

[N,HW,C’]

Transpose

[N,HW,C’]

[N,H,W,C’] output

[N,H,W,C]

Figure A.1. The details of self-attention mechanism. A 1x1 convolutional layer reduces the number of input channels to C′. The query
(Q), key (K), and value (V ) matrices are then projected from this transformed tensor, reshaped into [B, THW,C′], and processed through
the scaled dot-product attention mechanism.

Masked 
BEV

Conv3x3 Conv3x3 Conv1x1

Auto-regressively

Model prior as Gaussian DistributionVAE

Figure A.2. The details of VAE. The VAE consists of three convolutional layers, each followed by batch normalization and a leaky
ReLU[53] activation function.

Table A.1. This table presents the evaluation of different Gaussian sizes (1x1, 16x16, 32x32, and 64x64) for the VAE model in terms of
static objects, moving objects with speed ≤ 5m/s, moving objects with speed > 5m/s, and overall motion stability. Notably, the 64x64
scale shows the best performance in most categories, especially for high-speed objects and overall motion stability, indicating a potential
trade-off between accuracy and efficiency.

Model Gaussian Size
Static Speed ≤ 5m/s Speed > 5m/s Motion Stability

Mean↓ Median↓ Mean↓ Median↓ Mean↓ Median↓ Variance

VAE 1x1 0.0339 0 0.2493 0.0921 0.9141 0.6092 0.01525
16x16 0.0295 0 0.2317 0.0926 0.8818 0.6148 0.00834
32x32 0.0288 0 0.2258 0.0859 0.8542 0.5916 0.00847
64x64 0.0285 0 0.2364 0.0893 0.8064 0.5869 0.00741

V ′ = reshape(V ) ∈ RB×THW×C′
, (A.15)

A = softmax
(
Q′K ′⊤
√
C ′

)
V ′ ∈ RB×THW×C′

, (A.16)

Y = reshape(A) ∈ RB×T×H×W×C′
. (A.17)

The resulting output tensor Y has the same spatial-
temporal dimensions as the input, [B, T,H,W,C ′], pre-
serving the original structure while embedding temporal at-
tention.

For spatial self-attention, the input tensor has dimensions
[B,H,W,C], where H and W are the height and width of
the grid, and C is the number of input channels. A 1x1 con-
volutional layer similarly reduces the number of input chan-
nels to C ′. The query (Q), key (K), and value (V ) matri-
ces are then projected, reshaped into [B,HW,C ′], and pro-
cessed through the scaled dot-product attention mechanism,
as shown in (A.18)-(A.24). The output tensor Y maintains
the spatial dimensions of the input, [B,H,W,C ′], while
embedding spatial attention.



1-(a) 1-(b)

1-(c) 1-(d)

2-(a) 2-(b)

2-(c) 2-(d)

3-(a) 3-(b)

3-(c) 3-(d)

4-(a) 4-(b)

4-(c) 4-(d)

9-(a) 9-(b)

9-(c) 9-(d)

10-(a) 10-(b)

10-(c) 10-(d)

11-(a) 11-(b)

11-(c) 11-(d)

12-(a) 12-(b)

12-(c) 12-(d)

5-(a) 5-(b)

5-(c) 5-(d)

6-(a) 6-(b)

6-(c) 6-(d)

7-(a) 7-(b)

7-(c) 7-(d)

8-(a) 8-(b)

8-(c) 8-(d)

Figure A.3. Comparison of qualitative between results of the proposed PriorMotion and baseline model on nuScenes. Blue border:
(a)object-level ground truth(GT) in BEV; (b)grid-level GT Green border: (c)PriorMotion predictions; (d)baseline model predictions.
We represent the motions with an arrow attached to each grid. The cell classification result is represented by various colors. Cyan:
background; pink: vehicle; black: pedestrian; yellow: bike; red: others.

Q = Conv1x1(X) ∈ RB×H×W×C′
, (A.18)

K = Conv1x1(X) ∈ RB×H×W×C′
, (A.19)

V = Conv1x1(X) ∈ RB×H×W×C′
, (A.20)

Q′ = reshape(Q) ∈ RB×HW×C′
, (A.21)

K ′ = reshape(K) ∈ RB×HW×C′
, (A.22)

V ′ = reshape(V ) ∈ RB×HW×C′
, (A.23)

A = softmax
(
Q′K ′⊤
√
C ′

)
V ′ ∈ RB×HW×C′

, (A.24)

Y = reshape(A) ∈ RB×H×W×C′
. (A.25)

1.2. DSpG
VAE network. The Variational Autoencoder (VAE) net-
work is designed to capture the latent space representation

of the input data, which is crucial for generating realistic
and diverse motion predictions. The VAE consists of three
convolutional layers, each followed by batch normalization
and a leaky ReLU activation function. The detailed archi-
tecture is as shown in Fig.A.2:

Multi-Task Feature Selection Decoder. The SE atten-
tion mechanism is defined as:

FSD(F) = σ (WfGAP (F)) · F (A.26)

where F represents the input features, W denotes a lin-
ear transformation matrix, fGAP represents global average
pooling, and σ is the sigmoid activation function. This
mechanism ensures that the network efficiently allocates its
focus to task-relevant information, optimizing performance
for diverse tasks.



2. More Details about Loss Function Designs
We present more detailed loss function designs here.

Motion Prediction Loss. To accurately predict the future
positions of objects, we employ a weighted smooth L1 loss.
This loss ensures that the displacement of each non-empty
grid cell is correctly estimated. The motion prediction loss
is defined as:

Lmot =
1

N

N∑
i=1

wi · SmoothL1(xmot,i, xgt mot,i) (A.27)

where xmot,i represents the predicted displacement for the
i-th cell, xgt mot,i is the corresponding ground truth, N is
the total number of non-empty cells, and wi balances the
representation of different categories by assigning a weight
to the i-th cell.

State Estimation Loss. To distinguish between dynamic
and static elements in the scene, we use a cross-entropy loss
for state estimation. This loss predicts whether each cell is
in motion or stationary:

Lstate =
1

N

N∑
i=1

wi · CE(xstate,i, xgt state,i) (A.28)

where xstate,i is the predicted motion state of the i-th cell,
and xgt state,i is the ground truth. The cross-entropy function
CE evaluates the prediction error.

Cell Classification Loss. For semantic understanding of
each grid cell, a cross-entropy loss is used to classify cells
into predefined categories. This classification helps the net-
work interpret the scene at a higher semantic level:

Lcls =
1

N

N∑
i=1

wi · CE(xcls,i, xgt cls,i) (A.29)

where xcls,i is the predicted class of the i-th cell, and xgt cls,i
is the ground truth class label.

3. More Details about Experimental Setting
FMCW LiDAR Benchmark. We conduct experiments
on our private FMCW LiDAR benchmark, a collected
dataset specifically designed for evaluating motion predic-
tion in autonomous driving scenarios. The benchmark fea-
tures a 128-degree forward-facing FMCW LiDAR sensor,
capturing data at 10Hz. It includes 250 scenes, divided into
150 scenes for training, 50 for validation, and 50 for testing.
The duration of each scene varies depending on the driving
context. Each LiDAR frame is annotated with ground truth
bounding boxes, providing high-quality supervision for mo-
tion prediction tasks.

Evaluation metrics. To comprehensively evaluate our
model’s performance, we follow the evaluation protocol es-
tablished in [47] and divide the non-empty cells into three
groups based on their speeds: static (speed ≤ 0.2m/s),
slow (0.2m/s < speed ≤ 5m/s), and fast (speed >
5m/s). For each group, we report the mean and median pre-
diction error, which is calculated as the L2 distance between
the predicted displacements and the ground truth displace-
ments 1 second into the future. The mean prediction error
for a group G is given by:

Mean ErrorG =
1

|G|
∑
i∈G

∥d̂i − di∥2 (A.30)

where d̂i is the predicted displacement and di is the ground
truth displacement for cell i.

The median prediction error for a group G is given by:

Median ErrorG = median
({

∥d̂i − di∥2 | i ∈ G
})
(A.31)

In addition to the motion prediction error, we also eval-
uate the performance on auxiliary cell classification tasks.
We report the overall accuracy (OA), which is the average
accuracy over all non-empty cells:

OA =
1

N

N∑
i=1

I(ŷi = yi) (A.32)

where N is the total number of non-empty cells, ŷi is the
predicted class, and yi is the ground truth class for cell i.

We also report the mean category accuracy (MCA),
which is the average accuracy over all five categories:

MCA =
1

C

C∑
c=1

TPc

TPc + FNc
(A.33)

where C is the number of categories, TPc is the number of
true positives for category c, and FNc is the number of false
negatives for category c.

4. More Qualitative Results on Nuscenes
More qualitative results are shown in Fig. A.3. Our Pri-
orMotion framework is able to accurately predict motion
across diverse object categories, and dramatically improve
the motion stability and prediction ability at distance region.

5. More Experiment
5.1. Different Latent Feature Size
Comparison of the latent feature size. We experiment
with different Gaussian distributions, comparing 1 × 1,
16× 16, 32× 32, and 64× 64 scales, as shown in Tab. A.1.
Our results show that increasing the scales can enhance the



Table A.2. Performance Comparison of VAE and GAN in PriorMotion. The table shows the mean error, median error, and variance for
static objects, moving objects with speed ≤ 5m/s, moving objects with speed > 5m/s, and overall motion stability.

Model
Static Speed ≤ 5m/s Speed > 5m/s Motion Stability

Mean↓ Median↓ Mean↓ Median↓ Mean↓ Median↓ Variance

VAE 0.0281 0 0.2493 0.0921 0.9141 0.6092 0.01525
GAN 0.0262 0 0.2377 0.0796 0.9596 0.6174 0.01986

1-(a) 1-(b)

1-(c) 1-(d)

2-(a) 2-(b)

2-(c) 2-(d)

3-(a) 3-(b)

3-(c) 3-(d)

4-(a) 4-(b)

4-(c) 4-(d)

5-(a) 5-(b)

5-(c) 5-(d)

6-(a) 6-(b)

6-(c) 6-(d)

7-(a) 7-(b)

7-(c) 7-(d)

8-(a) 8-(b)

8-(c) 8-(d)

Figure A.4. Comparison of qualitative between results of the proposed PriorMotion and baseline model on FMCW LiDAR. Blue border:
(a)object-level ground truth(GT) in BEV; (b)grid-level GT Green border: PriorMotion predictions (c); (d)baseline model predictions.
We represent the motions with an arrow attached to each grid. The cell classification result is represented by various colors. Cyan:
background; pink: vehicle; black: pedestrian; yellow: bike; red: others.

performance of motion prediction. This improvement is at-
tributed to the ability to model different regions with finer
granularity, which captures more detailed spatial and tem-
poral patterns. However, larger scales also introduce greater
computational overhead, which may impact the efficiency
of the model. Therefore, there is a trade-off between the
performance gain and the increased computational cost.

5.2. Different Generative Model
Comparison of generative models. We also compare the
effectiveness of different generative models in PriorMotion.
Specifically, we evaluate the use of Generative Adversarial
Networks (GANs) and Variational Autoencoders (VAEs).
Both models show improvements, but our generative model,
which is based on a VAE, achieves the best performance.
Notably, GANs, due to their dual-model architecture, have
a more complex and larger overall structure, making them
more challenging to train. The performance comparison of
the two generative models is shown in Tab. A.2.

5.3. Performance on the FMCW LiDAR Dataset
Main Results. We compare our proposed PriorMotion
framework with several state-of-the-art (SOTA) approaches

on the motion prediction task using the FMCW LiDAR
dataset. As shown in Tab. A.3, PriorMotion demonstrates
significant performance improvements across various met-
rics, particularly in challenging scenarios.

Our framework achieves consistent improvements with
different backbones, including STPN and STI. Specifically,
with the STI backbone, PriorMotion achieves a 9.63% re-
duction in the mean prediction error for static objects and a
15.98% reduction for objects moving faster than 5m/s, com-
pared to the BE-STI baseline. Furthermore, PriorMotion
achieves the best performance in speed stability, reducing
the error to 0.0607.

In addition to motion prediction, PriorMotion outper-
forms competing approaches in the cell classification task.
It achieves the highest Mean Class Accuracy (MCA) of
75.2% when paired with the STI backbone, demonstrating
its ability to effectively classify dynamic objects such as bi-
cycles and pedestrians in complex traffic scenarios. These
results highlight the robustness and versatility of our frame-
work across different tasks and backbones.

Prediction performance at distant region. We evalu-
ate the performance of PriorMotion across various distance



Table A.3. Comparison with State-of-the-Art Results on FMCW LiDAR benchmark.

Method Backbone Static Speed≤5m/s Speed > 5m/s
Motion Stability↓ Cell Classfication

Mean↓ Mean↓ Mean↓ MCA↑ OA↑

MotionNet STPN 0.0644 0.5036 1.0654 0.1992 74.2 97.5
STPN /w (Ours) STPN 0.0653 0.4344 0.8897 0.0722 74.6 97.2

STI STI 0.0645 0.4457 0.9278 0.1017 74.3 97.5
STI /w (Ours) STI 0.0641 0.4028 0.7792 0.0607 75.2 97.3

Table A.4. Comparison with SOTA methods on FMCW LiDAR benchmark on long-distance speed error metrics.

Method Backbone
Static Speed ≤ 5m/s Speed > 5m/s

Mean↓ Median↓ Mean↓ Median↓ Mean↓ Median↓

MotionNet STPN 0.05223 0 0.4914 0.3459 1.1371 0.5322
STPN /w (Ours) STPN 0.06164 0 0.4830 0.2218 1.0904 0.4207

STI STI 0.06302 0 0.5221 0.2395 1.1034 0.4671
STI /w (Ours) STI 0.06448 0 0.4678 0.2144 0.9135 0.4590

ranges, with a particular emphasis on long distances ([20m,
64m]). Our method not only demonstrates significant im-
provements in reducing prediction errors at these longer
ranges on nuScenes[4], as evidenced in Tab. 5, but also es-
tablishes its superiority on our proprietary FMCW LiDAR
benchmark (shown in Tab. A.4). On this benchmark, Pri-
orMotion consistently outperforms the baseline methods in
long-distance motion prediction, underscoring the effective-
ness of our approach.

For objects moving faster than 5m/s, PriorMotion re-
duces the mean error to 0.9135 and the median error to
0.4590 with the STI backbone, outperforming all base-
line methods. This demonstrates its enhanced ability to
handle challenging scenarios where point cloud data be-
comes sparse. Similarly, for slower-moving objects (speed
≤ 5m/s), PriorMotion achieves a mean error of 0.4678 and
a median error of 0.2144, significantly improving motion
prediction accuracy.

Traditional methods primarily optimize encoder designs
but struggle with the sparsity of distant point clouds. In con-
trast, our generative model leverages prior knowledge from
the motion field, effectively compensating for data sparsity
at long ranges. These results highlight the robustness of Pri-
orMotion in predicting distant object trajectories, ensuring
reliable performance even in challenging environments.

Qualitative Results. As illustrated in Fig. A.4, Prior-
Motion demonstrates superior performance, particularly for
fast-moving objects. Notably, scenarios such as turning at
intersections show significant improvements. Our frame-
work substantially reduces displacement prediction errors
across moving objects. Additionally, our method proves es-

pecially promising when handling sparse point clouds, par-
ticularly in distant regions.

In real-world autonomous driving systems, accurate and
reliable motion prediction is crucial for safe navigation. For
instance, PriorMotion enhances the system’s ability to an-
ticipate the movements of vehicles, cyclists, and pedestri-
ans at complex intersections, thereby improving decision-
making processes. This capability is essential for avoid-
ing collisions and ensuring smooth traffic flow. Moreover,
by effectively managing sparse point clouds in distant re-
gions, our methods contributes to more robust perception in
challenging environments, such as highways or rural roads
where sensor data may be limited. These advancements
pave the way for safer and more efficient autonomous driv-
ing technologies.


