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Appendix 1. OVMOT Problem Formulation
OVMOT requires the tracker to be capable of tracking ob-
jects from the open-vocabulary categories. We first present
the problem formulation of this task from the training and
testing stages.

At the training stage, the training data is
{
Xtrain ,Atrain

}
that contains video sequences Xtrain and their respective
annotations Atrain of the objects. Given one frame in the
video, each annotation α ∈ Atrain consists of a 2D bounding
box b = [x, y, w, h], a unified ID d over the whole video,
and a category label c, where (x, y) is the center pixel co-
ordinates and (w, h) is the width and height of the box, the
category belongs to the base class set, i.e., c ∈ Cbase .

At the testing stage, the inputs consist of video sequences
Xtest and the set of all object classes C = Cbase ∪ Cnovel ,
where Cnovel denotes the novel categories not appearing in
the training set, i.e., Cnovel ∩ Cbase = ∅. OVMOT aims to
obtain the trajectories of all objects in Xtest belonging to
classes C. Each trajectory τ consists of a series of tracked
objects τt at frame t, and each τt is composed of a 2D
bounding box b, and its object category c. Note that, during
the testing stage, we need to evaluate not only the results on
the base class Cbase , but also on the novel class Cnovel . The
results on Cnovel can validate the tracker’s capability when
facing objects from the open-vocabulary categories.

Appendix 2. Training Data Analysis
As discussed above, we use the training dataset in TAO for
association module training. Next, we will analyze our ex-
perimental results from the perspective of the data quantity
used for training.

TAO dataset. As shown in the first row of Table 1, we
can see that the original TAO dataset has very few anno-
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tated frames, with only 18.1k frames, and limited box an-
notations of 54.7k. This is because the annotations in TAO
were made at 1 FPS, resulting in a very limited number of
supervised frames and available annotations for training a
robust tracker.

As shown in the next row, in our self-supervised method,
we use all the raw video frames without requiring any an-
notations. We can see that the usable frame quantity has
increased by 30 times compared to the original training
set (with annotations). Also, the quantity of available ob-
ject bounding boxes for self-supervised training has reached
399.9k, which is 7.5 times as many as the original number
of annotated ones. Moreover, by integrating the long-short-
term sampling strategies, we can fully utilize all the long-
short-term frames within the TAO raw videos through our
self-supervised method, thereby achieving better results.

LVIS dataset. As shown in Table 1 in the main paper,
the comparison methods QDTrack [3] and TETer [4] trained
on the LVIS dataset with both base and novel classes, still
yield poor results in TAO validation and test sets. This may
be due to the imbalance in the data quantity of base and
novel categories. Specifically, as seen in Table 1, although
the LVIS dataset has a large number of frames and anno-
tations for its base classes, the data for its novel classes is
very limited, with the number of frames being 1

66 and the
number of annotations even less, at 1

239 .

Table 1. The number of frames and annotations can be used to train
in LVIS, annotated TAO, TAO in our self-supervised paradigm.

Datasets Frames Annotations (detections)
TAO (with GT) 18.1k 54.7k
TAO (Raw videos) 534.1k 399.9k

LVIS base novel base novel
99.3k 1.5k 1264.9k 5.3k
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Appendix 3. Module Complementarity Discussion
When designing the entire framework, we also consider the
complementarity of the localization, classification, and as-
sociation modules, enabling them to assist each other.

Improving classification via association. Following the
baseline [5], we use the most frequently occurring category
within a trajectory as the category classification result in
that trajectory. This way, the classification results could be
improved through better associations. Such relationship ex-
plains the reason that category clustering operations used in
our self-supervised object association training strategy ef-
fectively increase the classification performance, as shown
in Table 2 in the main paper.

Improving localization via association. Better track-
ing association also leads to more accurate detection eval-
uation in TETA metric. Specifically, TETA’s localization
accuracy (LocA) is not purely spatial-based but influenced
by tracking consistency. When computing detection-to-GT
matches, the matching score incorporates both spatial IoU
and historical track association weights. This design allows
consistently tracked detections to accumulate higher match-
ing weights across frames, thus helping resolve ambigu-
ous matches where multiple detections have similar spatial
overlaps with a ground truth box. This makes improving
LocA under TETA more challenging than conventional de-
tection metrics, as it requires both accurate detection and
consistent tracking. Nevertheless, our proposed tracking-
related object-state-aware learning strategy effectively im-
proves detection performance under this rigorous evalua-
tion framework by maintaining high-quality tracking asso-
ciations.

Similarly, better localization and classification results
also help achieve improved association results, e.g., the
category clustering in our method for association learning
could benefit from the better classification performance.
This makes our entire framework a cohesive whole with
multiple modules working collaboratively.

Appendix 4. More Experimental Analysis
Prompt-guided attention analysis. To demonstrate the ef-
fectiveness of prompt-guided attention in target state per-
ception and illustrate the necessity of filtering out low-
quality objects, we present additional examples of low
prompt-guided attention in Figure 1. The targets shown in
the figure exhibit severe occlusion, incompleteness, or poor
recognizability, which aligns with our initial design consid-
erations for the prompts. These damaged targets can lead
to network training issues where learning ambiguous target
features limits the network’s Open-Vocabulary (OV) gener-
alization capability. The proposed prompt-guided attention
mechanism effectively suppresses this critical issue in OV
settings, thereby significantly enhancing the perception of
novel targets.

Table 2. Time complexity of different tracking methods

Method Input shape Para. Model Size FPS
QDTrack (3,800,1334) 15.47M 298.6M 13.8
OVTrack (3,800,1334) 16.52M 283.77M 1.8
Ours (3,800,1334) 16.52M 283.77M 15.8

Figure 1. More visualization cases of the low prompt-guided at-
tention targets.

Failure case analysis. We provide some failure cases in
Figure 2. The first case illustrates a classification mistake
due to significant occlusion. The second case shows the
tracking errors caused by the distraction of object similarity
and variability. We find that the OVMOT combined with
the localization, classification, and tracking tasks presents a
significant challenge, yet it holds large research potential.

fig4 - tracking results- fail case 1
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Figure 2. Failure case illustration.

Model complexity analysis. We conducted a compar-
ative analysis of inference speed (FPS) among different
tracking methods, as shown in Table 2. Since the code
for SLAck is not publicly available, we focused our com-
parison on two state-of-the-art methods with open-source
implementations: QDTrack and OVTrack. Our experimen-
tal results demonstrate superior inference speed compared
to these baseline methods. Notably, during the inference
stage, we optimized the post-processing phase based on
OVTrack by removing redundant NMS processing in the
RPN and adjusting selection thresholds. These improve-
ments significantly enhance the inference speed, achieving
15.8 FPS, which is approximately eight times faster than
OVTrack (1.8 FPS) and outperforms QDTrack (13.8 FPS),
while maintaining comparable tracking accuracy.

Analysis of parameter settings. We considered two
representative parameter settings during the training and
testing processes and conducted ablation experiments as



Table 3. Ablation studies on segment length and similarity threshold.

Parameter Value Base Novel
TETA LocA AssocA ClsA TETA LocA AssocA ClsA

Segment Length

8 39.3 58.8 40.5 18.7 35.2 58.7 40.1 6.8
16 39.5 58.8 40.7 18.9 35.2 58.7 40.0 6.7
24 39.6 58.9 40.9 19.1 35.3 58.5 40.9 6.5
30 39.2 58.4 40.3 18.7 34.9 58.4 39.3 6.9

Similarity Threshold

0.30 39.5 59.1 40.7 18.6 35.3 58.7 40.5 6.7
0.35 39.6 58.9 40.9 19.1 35.3 58.5 40.9 6.5
0.40 39.3 58.8 40.4 18.7 35.2 58.8 39.9 7.0
0.45 38.9 58.4 39.8 18.6 34.5 58.2 38.2 7.2
0.50 38.9 58.3 39.7 18.7 34.5 58.3 38.1 7.1

shown in Table 3. During training, we examine the im-
pact of video segment length (in Section 3.3) used for self-
supervised training on the final results. We can see that our
method demonstrates good robustness to segment length,
performing well across lengths from 8 to 30, with the best
results at a length of 24 (used in the experiments). In the
inference process, we evaluate the similarity score thresh-
old (in Section 3.3) used in the association sub-task. We
observe that the Base AssoA maintains stable performance
around 40 within the range of 0.3 to 0.5. Similarly, the
Novel AssoA remains steady at approximately 40 between
0.3 and 0.4, and slightly decreases to around 38 when the
threshold exceeds 0.4. Both conditions demonstrate min-
imal fluctuation throughout their respective ranges. This
shows that our algorithm is also not sensitive to the tracker’s
similarity threshold setting.

Analysis of method generalization. To evaluate the
generalizability of our proposed self-supervised method
for OVMOT, we conduct cross-domain (cross-dataset) self-
supervised training and subsequently still validate the per-
formance on the TAO validation set. Specifically, we re-
placed the unannotated TAO dataset with unlabeled videos
from the LV-VIS dataset [6] during training. As shown in
Table 4, despite a slight performance degradation in the
cross-domain scenario, the performance loss is negligible,
and the method maintains state-of-the-art (SOTA) perfor-
mance. This experimental result demonstrates the remark-
able generalizability of our proposed approach to the raw
videos for training, highlighting its robust transfer learning
capabilities across different video datasets.

Table 4. Cross-domain transfer performance of proposed self-
supervised method.

Method Base Novel
TETA LocA AssocA ClsA TETA LocA AssocA ClsA

Trained by LV-VIS [6] 39.2 58.5 40.3 18.7 34.8 58.5 40.1 5.7
Trained by TAO (Ours) 39.6 58.9 40.9 19.1 35.3 58.5 40.9 6.5

Appendix 5. More Supplementary Details
Details during training. As mentioned in the main paper
regarding the experimental procedure, compared to using
the existing Open-Vocabulary Detection (OVD) method [2]
directly for localization and classification in OVTrack [5],

we train the OVD process using the base classes of the LVIS
dataset and incorporate tracking-related states into the train-
ing process (Section 3.2). This significantly enhanced the
localization and classification results in open-vocabulary
object tracking.

Additionally, in the training of the association module,
different from our baseline method [5] using the generated
image pairs constructed by LVIS, we further introduce a
self-supervised method for object similarity learning (Sec-
tion 3.3). Specifically, we utilize all the video frames in the
TAO [1] training dataset for self-supervised training, which
makes full use of the consistency among the objects in a
video sequence and greatly improves the association task
results.

Short-long-interval sampling strategy. We consider
the interval splitting of Tc in Eq. (3). As shown in Fig-
ure 3, we split the original videos into several segments
of length L and randomly sample the shorter sub-segments
with various lengths from each segment. These short-term
sub-segments are then concatenated to form the training se-
quence. Such training sequences include long-short-term
intervals. Specifically, we select the adjacent frames from
the same sub-segment, which allows the association head to
learn the consistency objectives under minor object differ-
ences. We also select the long-interval video frames from
different sub-segments, which allows the association head
to learn the similarity and variation of objects under large
differences.

Metrics. First, the localization accuracy (LocA) is de-
termined through the alignment of all labeled boxes α with
the predicted boxes of T : LocA = | TPL |

| TPL |+| FPL |+| FNL | ·
Next, classification accuracy (ClsA) is calculated using
all accurately localized TPL instances, by comparing the
predicted semantic classes with the corresponding ground
truth classes ClsA = |TPC|

|TPC|+|FPC|+|FNC| . Finally, asso-
ciation accuracy (AssocA) is determined using a compa-
rable approach, by matching the identities of associated
ground truth instances with accurately localized predictions
AssocA = 1

|TPL|
∑

b∈TPL
|TPA(b)|

|TPA(b)|+|FPA(b)|+|FNA(b)| .

The TETA score is computed as the mean value of the above
three scores TETA = LocA+ClsA+AssocA

3 .
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Figure 3. An illustration of interval sampling strategy.
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