Supplementary: Optimizing Under-Display ToF Imaging with Learnable
Fractional Reaction-Diffusion Dynamics and Beyond

In this document, we provide additional details concern-
ing “Optimizing Under-Display ToF Imaging with Learn-
able Fractional Reaction-Diffusion Dynamics and Beyond”.
Specifically, we provide more description and the mathe-
matical basis for our proposal, exhaustive implementation
details, and additional experimental results to further vali-
date it.

A. Task Definition in Under-Display ToF Depth
Restoration

The task of depth restoration in under-display Time-of-
Flight (UD-ToF) imaging aims to recover accurate depth
maps from degraded measurements captured through semi-
transparent display panels, such as TOLED (Transparent
OLED), as shown in Fig. 1. Compared with conventional
ToF imaging, UD-ToF suffers from more complex and se-
vere degradation due to the layered optical structure of the
screen and imperfect light transmission.
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Figure 1. Schematic of under-display ToF imaging. The infrared
signal passes through the screen twice, introducing attenuation and
multipath interference before reaching the ToF sensor.

Specifically, the major sources of degradation include:

e Multipath interference (MPI): Internal reflections
within the display layers and glass cover can cause the IR
signal to follow multiple paths, leading to biased depth
estimations.

¢ Spatially varying noise: Due to the non-uniform trans-
mittance and fabrication imperfections across the display
panel, the noise distribution varies spatially, violating the
i.i.d. assumption common in conventional ToF models.

« Signal attenuation and low SNR: The semi-transparent
screen introduces substantial signal attenuation by ab-
sorbing and scattering infrared light, while also introduc-
ing additional noise due to its complex layered structure.
As a result, the signal-to-noise ratio (SNR) decreases sig-
nificantly, leading to degraded depth accuracy.

Formally, given a degraded depth observation D.,, €
R7*W and auxiliary cues such as amplitude A or IR maps
I, the goal is to estimate a high-quality depth map D¢
that closely approximates the ground truth Dy. This esti-
mation must not only correct local distortions and missing
details caused by panel-induced degradation but also main-
tain global structural consistency across the scene. Further-
more, practical UD-ToF systems often operate under lim-
ited data and hardware constraints, making the design of
robust, interpretable, and physically grounded restoration
frameworks particularly critical.

B. More Description about Diffusion Process

In the main text, we have introduced the Perona-Malik (P-
M) model. Here. we will utilize it as the foundational basis
to facilitate the discussion of other related issues. Firstly,
given the spatial information z on a bounded domain €2 €
R? and time t, the latent clear image u(z) can be obtained
by solving the equation
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with ug(z) being the initial condition, g(-) the diffusivity
function and wu(z) the solution at time ¢.

Then we discretize the P-M model into a partial differ-
ential equation with an explicit finite difference scheme
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where At is the time step, V, is a finite difference ap-
proximation of the gradient operator, and ¢(V,u) =
(A(Vgu)1, -+ ,6(Vyu) k) with the influence function
@#(n) = ng(n). For simplicity, we denote u¢(z) as u;.



Based on Eq. 2, the update for the state u;4; in the dif-
fusion step can be expressed as
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where (p.q) is the central pixel to be updated.

Eq. 3 illustrates that the predicted state u; in the dif-
fusion process depends solely on the current state u;.

On the other hand, the update operation for each pixel
is essentially a weighted average of its neighboring pixels.
With the neighborhood-based difference approximation, the
updated formula can be expressed as
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where 6u¥ = u"" —ul?, and k = (m,n) € N can be
the 4-neighborhood or 8-neighborhood, even other neigh-
borhood patterns.

From Eq. 4, it can be observed that each diffusion step
can be regarded as a discrete convolution operation. This
operation uses a kernel to perform a dot product with a lo-
cal region of the image, generating a new pixel value. The
choice of kernel and its weights can be designed according
to the diffusion equation to control the diffusion rate and di-
rection. As a result, discrete convolution is commonly em-
ployed in an implementation to compute the diffusion pro-
cess efficiently.

C. Theoretical Basis

C.1. Fractional Calculus

There exist several definitions for fractional derivatives,
among which the Riemann-Liouville one [4, 6, 7] and the
Caputo one [12] are usually considered in the control field.
There also exists the Griinwald-Letnikov one [1] which co-
incides with the Riemann-Liouville one in many cases[11].

Physical and geometric interpretations of fractional
derivatives can be found in [13] and the references cited
therein. Moreover, the physical meaning of initial condi-
tions with the Riemann-Liouville fractional derivative was
explained in [5].

Through this section, let I = [a,b] C R, o € R4, and
[ = Ja|, where [«] (resp. |«]) denotes the smallest (resp.
largest) integer greater than or equal to «. Then, all the def-
initions given in this section can be found in [8, 11]. In
this section, we will introduce some fundamental functions
which play an important role in fractional calculus.

C.2. Gamma Function

Like the factorial operator which plays an indispensable
role in classical calculus, the Gamma function is one of the

most fundamental tools in fractional calculus. It was first
introduced by the famous mathematician Leonhard Euler as
a natural extension of the factorial operator from positive
integers to real numbers [3].

Definition 1. [9] The Gamma function is defined by: ¥ x €
C*\Z_,
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C.3. Riemann-Liouville fractional integrals and
derivatives

Let us begin this subsection with the following definition.

Definition 2. The Riemann-Liouville fractional integral of
a function f is defined as follows: ¥Vt > a,

Do f(t) = f(t), t
D, i f(t) = ﬁ/ (t—7)*"  f(r)dr (6)

Remark that if f is continuous for ¢ > 0, we have
lim D, 2 f(t) = Dq () = f(£) [11].

By taking integer numbers in (6), we can obtain the fol-
lowing Cauchy formula: Vn € N*,

D, 7 f(t) =
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which refers to the n*" order integral from a to t.

The Riemann-Liouville fractional integral of f can also
be interpreted as the convolution product of % and f:
Vit > a,

a—1
D;? (t) = x[a,+oo[@ * f(t)> ¥
where * stands for the convolution product, % is usually

called the kernel of the fractional integral operator, where
T[q 400 is the indicator function of the interval [a, +ool.
Thus, the function is assumed to be 0 for ¢t < a (causality).

Based on the R-L fractional integrals, the fractional
derivatives can be defined by applying the integer order
derivative operator.

Definition 3. The Riemann-Liouville fractional derivative
of a function f is defined as follows: ¥t > a,
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Module Name Layer Kernel Stride In/ Out Input
Coefficients convl Conv2D + GeLU 3 1 51732 feat_in
Prediciton conv2 Conv2D 3 1 32/32 convl
eat_out onv eat_in[0:32] + conv.
Conv2D 3 1 32/18 in[0:32] 2

Table 1. Network architecture for coefficient prediction in continuous convolution.

C.4. Caputo fractional derivatives

Different from the R-L fractional derivative, the Caputo
fractional derivative is defined by taking the R-L fractional
integral of an integer order derivative.

Definition 4. The Caputo fractional derivative of f is de-
fined as follows:
Vi €la, +o0f,

/t (t—7)"t fO(r) dr.
’ (10)

CDg,tf(t) = ﬁ

The upper-left index C' in CDg"t f is used to distinguish
from the R-L fractional derivative. The relationship between
these two fractional derivatives is established in the follow-
ing formulae.
oIf —1 < a < 0, then! = 0. We have:

D, f(t) = “Dg , f(2).

eIfa € Ry \ N, then! € N*. We have [11]:
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C.5. Griinwald-Letnikov fractional derivative

Let us introduce the last fractional derivative, which is par-
ticularly useful in this article.

Definition 5. The Griinwald-Letnikov fractional derivative
of a function f is given by: V't > a,
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coefficient.

The Griinwald-Letnikov scheme is usually used to ap-
proximate the Riemann-Liouville and Caputo fractional in-
tegrals and derivatives in discrete cases.

The choice of the Caputo derivative over others in
many real-world applications, especially in engineering and
physics, is often made due to its ability to incorporate initial

conditions that resemble those used in traditional integer-
order differential equations. These initial conditions are
generally understood and interpreted in a straightforward
manner within established theoretical frameworks.

C.6. Determination of the fractional orders

The study [2] investigates the determination of the frac-
tional order o in subdiffusion equations and proves that
under appropriate initial conditions, boundary constraints,
and additional observation constraints, the fractional order
is uniquely determined. The existence of a solution to the in-
verse problem is ensured when an appropriate observation
constraint is provided. Specifically, the integral condition

/ u(x, to)v1(x)dx = do # 0 (14)
Q

guarantees that a valid fractional order can be determined.
The function v; () represents the first eigenfunction of the
associated elliptic operator, ensuring that the constraint is
well-posed within the problem’s functional framework.

Uniqueness of the solution is established under addi-
tional restrictions. If the initial function satisfies the re-
quired regularity conditions and the first eigenvalue of the
spectral problem is zero (A1 = 0), then the fractional order
« is uniquely determined. The condition

d
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ensures that no multiple values of « satisfy the given inte-
gral constraint. In cases where noise is present in the obser-
vations, the stability of numerical methods may be affected,
but the fundamental existence and uniqueness results re-
main valid. Regularization techniques can be applied to mit-
igate numerical instability while preserving the well-posed
nature of the inverse problem.

D. Detailed Implementation Settings

We chose UD-ToFnet as our baseline network, but we
slightly modified its final convolutional layer to implement
our iterative optimization scheme. Specifically, we lever-
age three convolution layers to generate depth features F'.
The code for the deep fractional reaction-diffusion model
is adapted from NLSPN [10], with hyperparameter settings



also referenced from it. For instance, the number of iter-
ations is set to 6. Moreover, the confidence propagation
scheme within it is retained as an optional feature. To gen-
erate confidence maps, we also employ three convolutional
layers, taking the amplitude map derived from ToF raw
measurements as input. All the aforementioned convolu-
tional operations utilize hidden layers with 32 channels to
reduce the number of parameters. The approach to gener-
ating fractional orders aligns with that of generating confi-
dence maps.

On the other hand, due to the presence of singularities in
the Caputo fractional differential equations, the network fre-
quently encounters NaN values during training, leading to
interruptions. To mitigate the problem, we restrict the frac-
tional order within the range of [0.1, 0.9].

In addition, we provide the detailed neural network
structure for coefficient prediction of continuous convolu-
tion as reported in Table 1. During the training process, we
set two depth losses for the initial depth uy and the final
depth ug, which are defined as:

La = @ — ugt) OT |1 +Aa || (G0 — uge) OT 1 (16)

where I is pixel validity. Empirically, we set A\q = 0.1.
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Figure 2. Ablation study — Iteration Number. Comparison be-
tween models with different iteration numbers.

E. Additional Experimental Results
E.1. Effect of Iteration Number

This section demonstrates how model performance and in-
ference times vary with different iteration numbers. As
shown in Fig. 2, since our method exhibits long-term mem-
ory, where each current state is correlated with previous it-
erations, the inference time increases exponentially and the
MAE metric gradually exhibits a downward trend, as the it-
eration number grows. In particular, we observe fluctuations
in MAE when the iteration number is relatively low, specif-
ically, in the vicinity of iteration 5. In our experiments, we
set the iteration number to 6 to balance achieving satisfac-
tory metric performance and maintaining acceptable infer-
ence times.

E.2. Qualitative Results at Different Iterations

Here, we provide additional qualitative results at different
iterations. In Fig. 3, as the iteration number increases, depth
consistently and progressively approximates the ground
truth depth, indicating a steady improvement in accuracy
toward the desired outcome.

E.3. Qualitative Effect of Variable Order Selection

To validate the effectiveness of the variable fractional or-
der, we project the order of each pixel onto a 2D image.
As shown in Fig. 4, we discern that the order maps un-
dergo pronounced variations in regions with distinct gra-
dient changes, particularly along the edges of portrait and
facial models, while remaining relatively stable in flat re-
gions. This further demonstrates that the proposed method
is capable of accurately restoring depth while preserving
fine-grained details.

E.4. Qualitative Comparison with State-of-the-art
Approaches

Here, we report further qualitative comparison results on
the two UD-ToF datasets, the FLAT dataset and the NYUv2
dataset. As shown in Fig. 5-7, our network produces fewer
errors when recovering fine structures and high-frequency
details.
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Figure 5. Qualitative results on SUD-ToF dataset. From left to right: (a) IR image and (b) ground-truth depth, followed by (c-g) error
maps achieved by state-of-the-art solutions and (h) LFRD?, (i) depth maps predicted by LFRD?.
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Figure 6. Qualitative results on the FLAT dataset. From left to right, the first column is (a) Amplitude maps; (b)-(i) are error maps of
selected methods; the last three columns are (j) the error map of our method, (k) the prediction generated from our method and (1) the
ground truth depth.
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Figure 7. Qualitative comparison on the NYUv2 dataset. From top to bottom: (a) RGB image, (b) Bicubic upsampled depth map, (c)
GT; then, (d)-(h) are error maps achieved by selected methods; finally, (i) error maps and (j) predictions by LFRD?.
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