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1. Theoretical proofs for our meta-problem

1.1. Transformation of the distribution alignment
objective Eq. (1)

It is obvious that [ ¢(7|o)dT = 1. Then, for the marginal
likelihood p(o) of target variable o , we have:

log p(o) = / 4(7l0) log p(o)dr

= 7lo) 1o p(o,7) T

—/q(l)lgpmd

T q(7|o)
d7'+/q(7'|0) log p(7|o)dT
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dr + D Lla(7l0)||p(r]0)]
_ / g(7|0) log p(o|7)dr — Dicr[q(7]0) |p(7)]

+ Diwlg(t|o)|[p(7]o)]
= [Eq(rj0) log p(o|T) — Dxrla(r|o)|p(7)]]
+ Dirlg(r|o)|[p(r]o)].

13)

We know that log p(o) is deterministic. Next, we can follow
the process of variational inference: using the distribution
q(7|o) to approximate the distribution p(7|o), and minimiz-
ing the KL divergence between them D 1 [¢(7|0)||p(T]0)].
However, since direct minimization is intractable, we
transform the problem into maximizing the Evidence
Lower Bound (ELBO). Thus, the optimization objec-
tive becomes maximizing the ELBO E ;o) log p(o|T) —
Dkrla(r]o)|p(7)].

In our formula Eq. (1), pg,(7]o) is q(7]o),
and py(7|o)) is p(7|o)). Consequently, minmiz-
ing  Dgr(pe,(T|0)||pe(T|0)) equals to maxmizing

Epgi(T\o)Inge(Oh—) - DKL(pez(T|O)Hp9(T)) Our

optimization objective Eq. (1) can be transformed as:

pm(af)Epgi (]0) [log o, (0| T)] — Dk, [po, (7o) || po(7)] -
0, T|0
(14)

1.2. Simplication of the meta-optimizaiton objective
Eq. 3)

We have clarified that sampling from py, (7|0)) corresponds
to the following process: in the environmental dynamics
M, we input the object o into the model fp,, which then
generates the trajectory 7. Based on this, py, (7|o) can be
viewed as a Dirac delta distribution, i.e., pg, (7|0) = (1),
where 7 is produced by 6; given o in the environment M.
Consequently, we can derive the first term in Eq. (14) (or
Eq. (3) in the main paper) as follows.

By o lozpalo | 7)] = [ 8(r)log (o 7)dr

= —logpy(o|T)
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1.3. Rewards computing Eq. (6) in the inner-layer
optimization of end-to-end methods

Here, we would like to apologize and first address a notation
error in the original Equation (6). The correct expression
should be:

re(at, st, Te—1)
9 5 (16)
o [lo=go(T:t)llz = llo = go(m—1)ll = M

We have known that pg(o|r) = N (go(7),p*I),
so we can obtain that logpg(o|7) is linearly related to
—lo = ga(T) ||§ Through a series expansion, the proof of

the rewards computing in the inner-layer optimization of
end-to-end methods can be expressed as:

Po(0 | Tt = [St413 Tie—1])

1) =1 - A
ri(ac, i1, Ti-1) = log po(o | Tie—1)
=logpe(o | 7.t) —logpe(o | Ti4—1) — A
o —[lo = go(r:e) I3 — llo — go(m:e—1)II5] — A1
a7



1.4. The outer-layer optimization Eq. (7) in end-to-
end methods

We use 7 produced by fy updated in the paper to estimate
po: (7 | 0) and further update meta-parameters about gy and
fo. In the first part of the meta-loss, we utilize the reward
signals provided by the simulator and construct the A3C
loss to backpropagate higher-order gradients to gy and fy.
And for the second part, trajectory penalty loss, as shown
in Eq. (18), we should encourage pg*( ) by maxmizing
Epo, (r10) log po (0 | 7)] =Dk (po, (7 | 0) || po(7)) with re-
spect to pg(o | ) or pg(7), through the successful trajecto-
ries. In the same way, we should punish negative cases, i.e.,
the failed trajectories.

1 2
min — I[7r]-ay|lo — ge(7)||5 , where, 7 ~ f5, (18
pin 30 o~ o)l fi 019

where [[7] is a 1/-1 indicator function, which takes a value
of 1 if 7 is a trajectory where the target is successfully
found, and -1 otherwise.

1.5. The outer-layer optimization Eq. (9) in modular
methods

Similar to the previous section, we use 7 generated by fo,
as updated in the paper, to estimate py: (7 | 0) and further
refine the meta-parameters of go and fy. In the first part
of the meta-loss as Eq. (19), we penalize fy based on the
correctness of the predicted target point at the end of the
episode. The second part applies the same trajectory penalty
loss as in the previous section.

max -

can ||z — ZT||2, where, 7~ f5, (19)
fo.g0 N
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where z; is generated by the trajectory after the inner-
loop update of the network, and zp represents the last long-
term goal prediction in each episode.The meaning of I[7] is
the same as in Equation Eq. (18).

1.6. Benefits of learning the central distribution
po(7 | 0) across diverse environments

To prove Proposition 1, we show the following theorem
from [2] and [11]. Let & be a space and H be a class
of hypotheses corresponding to this space. Suppose S and
@Q are distributions over X'. Then for any h € H,

Eg(h) < X+ E&(h) + 3duan(Q,S), (20)

where ) is the error of an ideal joint hypothesis for Q, S,
&s(h) can be minimized by Empirical Risk Minimization
(ERM), and the divergence can be minimized by learning
indiscernible representations of the distributions.

Now we give the proof of Propostion 1.

Given that i € H, we have the following inequality ac-
cording to Eq. (20):

aig(@(h) < oA + s, (h) + %d}LAH(Q, Sl) 21

We can define A\, = ), o;\;, and obtain:
(&%)
Z()ng@(h) ?d’HA'H(Qagz)
Z 22)

We know that ). o; = 1 from Proposition 1, Eq. (22) be-
comes:

<A+ ails, (h) +

1
Eg(h) < /\a+zi: a;Es, (h)+§ 21: aiduan(Q,S;). (23)

The H-divergence follows the triangle inequality for each
SZ‘Z
dnan(Q,S;) < dyuan(Q,S*) +duan(S*,S;) (24

where
S* = arg min duan(Q,S). (25)

According the inequality Eq. (24), we have:
1
3 Z aiduan(Q,S;)
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In Proposition 1, it is important to note that under ex-
treme assumptions, the third and the last terms may exhibit
a competitive relationship. Specifically, as the last term de-
creases, the third term may increase. In such cases, it be-
comes necessary to balance the learning objectives to main-
tain their relationship.

2. Experimental results for our meta-problem
2.1. Datasets

The evaluation of our meta-learning mechanism integrated
with end-to-end RL methods is executed on iTHOR [8]
within the AI2-THOR platform. iTHOR provides near-
photorealistic observations in 3D environments, encom-
passing 120 scenes.

For modular methods, we evaluate the meta-learning
mechanism on the HM3D [14], MP3D [3] and Gibson [13]
datasets. We follow the setup protocol from the previous
works [4, 10, 16] For Gibson, we utilize 25 training and 5



validation scenes from the Gibson tiny split and choose 6
goal categories with 1,000 evaluation episodes. For HM3d,
we use 80 training, 20 validation and 20 test scenes, offer-
ing 2,000 valuation episodes with a total of 21 goal cate-
gories. In the case of MP3D, we apply the standard split of
56 training, 11 validation, and 18 test scenes, offering 2,195
episodes with a total of 21 goal categories for evaluation.

2.2. Evaluation metrics

We use the following metrics for evaluating our models in
the object navigation experiments. (1) Succ.: the success
rate. (2) SPL: the success weighted by path length [1]. SR
can assess the effectiveness of navigation and SPL can as-
sess the efficiency of navigation, which are:

*

N
NZ *L)’(27)
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-
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where N is the number of episodes in the experiments
and S; is a 0-1 indicator that represents whether the i-th
episodes succeeds, L; and L] are the path length taken by
the agent and the theoretical shortest path length in the i-th
episode.

2.3. Baselines

DAT [6] integrates two cognitive approaches: “Search
Thinking” and “Navigation Thinking.” This dual ap-
proach adapts to different phases of the navigation task.
PEANUT [15] introduces a method for ObjectGoal Nav-
igation that aims to predict the locations of unseen target
objects in unfamiliar environments by leveraging spatial
and semantic regularities. Meanwhile, we include another
method as baseline comparison: SAVN [12], which intro-
duces a self-supervised interaction loss, which the agent
uses to adapt to unseen environments during inference. This
loss encourages the agent’s gradients to align with those ob-
tained from supervised navigation loss during training

2.4. Implementation details

For end-to-end RL methods, we train our model for 3M
episodes induced by various environment-specific policies
in total with 16 asynchronous agents. We adopt Adam [7]
while setting the outer-layer learning rate as 1le—4 for learn-
ing meta-parameters and the inner-layer learning rate 5e — 5
for environment-specific parameters. Meanwhile, we set the
size of and the number of updating steps as 2 in the inner
layer. For modular methods, we train our model for 3M iter-
ations, and we also use the outer-layer learning rate as le—4
and the inner-layer learning rate 5e — 5. Further details are
provided in the appendix.

The implementation of the trajectory decoder involves
inputting 512x7x7 features of ResNet-50 from different
frames into a Transformer with 6 self-attention layers and

8 heads, followed by a linear layer to output a vector that is
ultimately aligned with a one-hot vector.

For the end-to-end methods DAT or HOZ, our imple-
mentation of the navigation policies in fy is consistent with
that in [6] or [17], and the inner-layer update interval K is
6. For the modular method PEANUT, our long-term step
interval k is 10, which is consistent with that in [15]. And
every M = 2 times the network updates the long-term goal
outputting probability map, we update the prediction net-
work. Therefore, the step interval we update the prediction
network K is 20.

2.5. Evaluation setup

Cross-environment and cross-simulator generalization
evaluation. We follow the traditional evaluation setup
of previous works [5, 6, 9, 17] for object navigation
task. For each episode in the training or test stage,
we select a scene and a target object randomly or non-
randomly in corresponding sets to perform it. And we
keep consistent with previous works on the predefined
test episodes in which scenes and targets are picked in
advance. To evaluate the performance of the meta-learning
mechanism in unknown environments with an expanded
generalization gap, we apply the model trained on one
simulators to new environments from other simulators to
demonstrate the flexibility and adaptability of our approach.

Adaptivity evaluation for one specific environment.
The problem is particularly fatal when encountered with
the very realistic situation where an agent needs to per-
form multiple navigation episodes in an identical unfamil-
iar environment. Therefore, to analyze the average perfor-
mance of an environment-specific model, we propose a new
evaluation setup in which multiple navigation episodes are
conducted with randomly selected targets within the same
environment after environment-specific model adaptation.
We randomly select some environments and then calcu-
late their average results. More details about the dataset
setup can be found in the appendix. To be specific, in
AI2-Thor, we select 20 scenes from each scene type ran-
domly for meta-training, 5 scenes for meta-validation and
5 scenes for meta-test. As can be seen above, we set
the environment-specifc model learning adaptively for each
scene. We need to sample K; object-navigation episodes

m = {(0M, 02 .. oK1 (where o; is the target to
be located.) in each scene for the learning process 14.
After learning the environment-specifc model, we sample
Qm = {0oM, 02, 0(F2)} through it to evaluate it in the
current scene.



2.6.

Qualitative results

As shown in the Fig. |, we visualize the results of mod-
els PEANUT and PEANUT+LOG and observed that when
searching for the bed, proving that our method is more effi-
cient.
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Figure 1. Example navigation episodes from HM3D (val) using PEANUT and PEANUT+LOG.



