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Algorithm 1 Domain re-adaption Simplex Initialization Al-
gorithm

Input: SAM image encoder fim(·), A random subset
of the SA-1B training data tar, clean task-specific
image xτ ,ℓ1 Loss function L(·) with domain re-
adaption, number of mode’s optimization iteration
t,perturbation budget ϵ, decay factor µ, number of sim-
plexes N ,random patch augmentation PT (·)

Output: Vertices of the adversarial simplicial complex K
1: Init. x∗

0 = xτ , g0 = 0

2: for i = 0 → t− 1 do
3: Input x∗

0 and xτ to fim(·) and obtain the gradient
∇xL(fim(x∗

τ ), fim(xτ ), tar); Use Eq(??)
4: Update gi+1 by accumulating the velocity vector in

the gradient direction as

gi+1 = µ · gt +
L(fim(x∗

i ), fim(xi))

∥∇xL(fim(x∗
i ), fim(xi))∥1

;

5: Update x∗
i+1 by applying the sign gradient as

x∗
i+1 = x∗

i +
ϵ

t
· sign(gi+1);

6: end for
7: return Initial vertex of ASC x0

0 = x∗
t

1. Initialization for ASC

In Section 3.2, we propose our adversarial simplicial com-
plex (ASC)initialization method, a novel method that learns
an adversarially strong initial vertex for the adversarial
complex which is closer to the surrogate model’s training
data domain to enhance the attack potential of our sim-
plicial complex. Specifically, we use MIM gradient opti-
mization method, incorporating a domain re-adaptation reg-
ularization term into the optimization objective: ensuring
that adversarial samples in feature space are distant from
the semantics of clean images, while reducing the distri-
bution discrepancy between adversarial samples and train-
ing data.This leads to further improved generalization per-
formance of the attacks to downstream models,laying the
groundwork for the optimization of ASC.The detailed im-
plementation of Initialization is shown in Algorithm 1.

2. Algorithm for ASC
With the initial vertex in Section 3.2, we propose a novel
Vertex-refine ASC optimization strategy. To enhance the
diversity of the ASC, we designed a patch arrangement role
tailored for the ViT architecture of the surrogate model. Af-
ter augmenting the adversarial initial vertex, it serves as the
starting point for each simplex in the complex. To ensure
the stability (overall quality) of ASC, we opt for the Vertex-
refine approach, which fixes known vertices and seeks the
geometric center as the new initial position for optimiza-
tion. To guarantee the attack transferability of the adversar-
ial simplicial complex and to maximally explore the vulner-
abilities of the surrogate model, we maximize the volume
of the ASC while ensuring it remains in a high-loss region.
The detailed implementation of Initialization is shown in
Algorithm 2.

3. Visualization of predictions
We randomly selected images for each task to visualize their
segmentation results under different methods, allowing for a
direct comparison of performance in Fig. 1. This visualiza-
tion demonstrates the severe threat posed by our VeSCA ad-
versarial attack to downstream task models, significantly re-
ducing the reliability of predictions from large foundational
models using an independent input image. Notably, since
SpaceNet consists of large high-altitude satellite images, to
best showcase the attack effects, we randomly chose a sec-
tion of it for magnification.

4. Parameter analysis
To explore VeSCA’s sensitivity to hyper parameters, we in-
vestigated the impact of several key parameters on ISTD
datasets. As shown in Figure 2, we analyzed how different
hyper parameters affect VeSCA’s performance and identi-
fied their optimal values for our previous experiments.First,
the number of iterations t in the initialization of the adver-
sarial simplex increases BER as it grows, the performance
converges at t = 10. Second, the Monte Carlo trials H
shows an evident improvement in BER with its increase ,
peaking at H = 6

For N simplex vertices increasing, BER rises, peaking
at n = 4, 5, then slowly falls. This may be due to the ex-
panding simplicial complex pushing random samples fur-
ther from the training domain. When the number of simplex
is constant, increasing the number of vertices M per sim-
plex boosts BER, peaking at M = 5, then stabilizing.BER
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Figure 1. The visualized adversarial attack results in ISTD, CAMO, CHAME,SegInW, SpaceNet datasets by different attacks.

Figure 2. The BER(↑) of adversarial examples generated by
VeSCA on ISTD dataset with the change of six hyperparameters

peaks at a volume weight λ = 0.1, indicating optimal ad-
versarial impact. Below 0.1, BER rises with increasing λ,
while above 10, BER declines, suggesting diminishing re-
turns on adversarial effectiveness as λ moves away from
the optimum.When λ = 100, BER increases but does not
exceed the value at λ = 0.1.

5. Information of Datasets

In Section 4.1, we use five datasets for different downstream
tasks. The datasets include ISTD which contains 1870 im-
age triplets of shadow images, CHAMELEON that con-

tains 76 camouflaged images, and the CAMO dataset which
contains 1500 camouflaged object images.The CityScale
dataset contains 180 satellite images of 20 U.S. cities.The
SegInW dataset for zero-shot segmentation which contains
2330 images from 25 open classes.

6. Impacts of work
Our method generates highly transferable adversarial sam-
ples using an open-source SAM base model to compro-
mise its downstream task models. Unlike prior efforts, we
focus on identifying vulnerable spaces that pose risks to
downstream tasks by constructing an Adversarial Simpli-
cial Complex (ASC). This allows for a more comprehensive
assessment of the foundational model’s risk propagation.

Experiments across multiple downstream models and
datasets demonstrate that the base model’s security risks
pose significant potential threats to downstream tasks. The
numerous adversarial samples within ASCs which have
large volume successfully attack downstream tasks, high-
lighting the urgent need for robust defense mechanisms to
protect these models from adversarial threats.

7. Hardware
Tests on downstream task models are performed on
NVIDIA GeForce RTX 3090 GPUs, except that experi-
ments on generating downstream adversarial samples by
various attack methods are conducted on two NVIDIA
H800 PCIe GPUs with 80 GB memory due to their large
memory requirements.



Algorithm 2 Vertex-Refining Simplicial Complex Attack
Algorithm

Input: SAM encoder fim(·), task-specific image xτ , Loss
function L(·), Initial vertex x0

0, PAR augmentation
PAR(·), segmentation scale ns, random angle θ, num-
ber of vertex’s optimization iterationT ,perturbation
budget ϵ, decay factor µ, number of simplexes
N ,number of vertices M , regularization parameter λ∗,
Monte Carlo timesH .

Output: ASC Kadv

1: xi
0 = PAR(x0

0, ns), i = 1, 2, . . . , N − 1

2: Get Initial ASC as

K(S0(x
0
0), S1(x

1
0), . . . , SN−1(x

N−1
0 ))

3: for n = 0 → N − 1 do
4: S′

n = Sn

5: for m = 0 → M − 2 do
6: Init. g0 = 0 and x∗

0 =
xn
0 +

∑m+1
t=1 xn

t

m+2

7: for k = 0 → T − 1 do
8: Input x∗

k and xτ to fim(·) ,and sample H
verticesx∗

k,h from S = S′
n ∪ x∗

k

9: if m = 0 then
10: Lop =

∑H
h=1 L(fim(x∗

k,h),fim(xτ ))

H

11: else
12: Lop =

∑H
h=1 L(fim(x∗

k,h),fim(xτ ))

H +
λ∗

logV(S′
n)

∗ logV(S)
13: end if
14: Update gt+1 and x∗

k+1

gk+1 = µ · gk +
∇xLop

∥∇xLop∥1
;

x∗
k+1 = x∗

k +
ϵ

T
· sign(gk+1);

15: end for
16: xn

m+1 = x∗
T and S′

n = S′
n ∪ xn

m+1

17: end for
18: end for
19: return Kadv


