
Appendix: Benchmarking Multimodal Large
Language Models Against Image Corruptions

A. Details on the MLLM-IC Benchmark
A.1. MLLM-IC-mini
We introduce a streamlined evaluation subset by sampling
50 QA pairs per capability dimension, resulting in only
8.4% of the full set while preserving the hierarchical struc-
ture. Using 8×RTX 3080 GPUs, the evaluation time is re-
duced from 75 to 6.3 hrs for DeepSeek and from 60.7 to 5.1
hrs for LLaVA.

A.2. Definition of Mid-Level Capabilities
In constructing MLLM-IC, we streamlined redundant tasks
and reorganized the mid-level structure to better align with
the capabilities required by MLLMs. The mid-level capa-
bilities are defined as follows:

Global Context Sensing This task evaluates the model’s
ability to interpret global information in an image, with a fo-
cus on the overall atmosphere or general layout of the scene.

Instance & Part Recognition This task evaluates the
model’s proficiency in identifying fine-grained details
within an image, particularly in recognizing individual ob-
jects and their constituent parts.

Spatial Perception This task examines the model’s abil-
ity to understand spatial relationships, including the physi-
cal positioning, orientation, and relative arrangement of ob-
jects within a given scene.

Knowledge Reasoning This task measures the model’s
capability to draw conclusions or make inferences by lever-
aging external background knowledge or domain-specific
understanding.

Logical Reasoning This task evaluates the model’s abil-
ity to perform logical deductions, predictions, and compar-
isons. Unlike knowledge reasoning, which relies on exter-
nal information beyond the provided input, logical reason-
ing is grounded in the contextual data.

A.3. Synthetic vs real-world corruptions
Synthetic corruptions are easy to generate and allow for
controlled, comparable evaluations, as all corrupted images
are derived from a base dataset to the best of our knowledge.

This design choice is consistent with all benchmarks listed
in Table 1 of the main paper.

However, the gap between synthetic and real-world cor-
ruptions remains uncertain, largely due to the absence of
a suitable real-world corruption dataset. As a preliminary
study, we examine the extent to which synthetic corruptions
resemble real-world cases. We applied severe-2 synthetic
motion blur (SB) to 4,913 reference images (R) from Real-
Blur dataset and compared to real blurred (RB) reference
images. We observe FID(RB, SB) = 15.9 is lower than
FID(R, RB) = 22.9 which is close to FID(R, SB) = 26.8,
indicating that synthetic corruptions provide a faithful ap-
proximation of real-world effects.

To improve the generalizability of MLLM-IC, we plan
to incorporate a real-world validation set in future ver-
sions of the benchmark. Specifically, we collect images
from denoising datasets (e.g., SIDD), deblurring datasets
(e.g., RealBlur and RWBI), and weather-related datasets
(e.g., RealRain, RSOD, and REVIDE). We then use GPT-
4o to generate question-answer pairs following the MM-
Bench/SEEDBench format, and subsequently refine incor-
rect responses with the assistance of human experts.

A.4. General and Specific Corruption Types
The mapping from general corruption types to specific cor-
ruption types is outlined below, followed by the design prin-
ciples for severity levels.

Global-Level Corruptions These corruptions involve
applying a uniform transformation to all pixels in the im-
age. For instance, color channel corruptions are intro-
duced by applying a consistent function specific to color
channels across all pixels. Geometric transformations are
performed by applying an identical transformation ma-
trix to every pixel. Blurring is achieved through a uni-
form smoothing operation, such as convolutional kernels,
which process pixel neighborhoods consistently throughout
the image. Texture-changing corruptions typically involve
gradient-based operations, such as edge detection or sharp-
ening, which enhance contrast and emphasize structural fea-
tures while potentially degrading fine texture details.
Regional-Level Corruptions These corruptions divide
the image into multiple spatial regions, each undergoing
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a uniform transformation that may differ across regions.
For example, occlusions are introduced by setting pixel val-
ues within specific regions to zero. Weather-based corrup-
tions serve as a specialized form of occlusion, where envi-
ronmental effects act as occlusion layers, often accompa-
nied by blurring to simulate real-world conditions. Image
compression reduces storage requirements by exploiting the
high correlation between adjacent pixels in certain regions,
thereby minimizing the number of bits needed for represen-
tation. Shape-altering transformations involve segmenting
the image into regions and applying affine transformations
selectively, resulting in localized distortions.
Pixel-Level Corruptions These corruptions are applied
independently to each pixel. For example, noise corruptions
introduce random, independent variations to each pixel’s in-
tensity, altering pixel values in a stochastic manner.
Five Severity Levels The severity levels of each corrup-
tion type are determined based on the following principles:
(1) For parameters with a fixed range, the range is divided
into five discrete levels, with corresponding values assigned
to each level. (2) For parameters with an open range, the
highest severity level is set based on the maximum value
at which the image remains recognizable to humans. The
remaining levels are then defined using the first criterion.

A.5. Validation Experiment on ImageNet
To further validate our findings, we replicate the experiment
in Section 3.2 of the main paper on a 500-image subset of
the ImageNet dataset. As illustrated in Figure 1, the results
align with those from the CIFAR dataset, reinforcing the
consistency of our observations.

Figure 1. t-SNE visualization of the mean feature representations
for 200 corruption types on ImageNet subset.

A.6. Visualization of Corruption Types
Figure 3 illustrates the 40 specific corruption types designed
in the MLLM-IC benchmark.

B. Details on the MLLM Evaluation
B.1. Experimental Settings
In Section 4 of the main paper, we evaluate the performance
of several MLLMs using the proposed benchmark. To en-
sure fairness and consistency, all models are evaluated using
their officially recommended parameter configurations. Ta-
ble 1 provides detailed information about the models em-
ployed in our experiments, including their versions and
checkpoints. These MLLMs are primarily sourced from
GitHub repositories and downloaded from HuggingFace.

Table 1. Summary of models used in the evaluation

Models Versions and Checkpoints

LLaVA-1.5 liuhaotian/llava-v1.5-7b
HoneyBee Honeybee-C-7B-M256
Inf-MLLM mightyzau/InfMLLM 7B Chat
Transcore-M PCIResearch/TransCore-M
MiniGPT-4 Vicuna-V0-7B
mPLUG-Owl2 MAGAer13/mplug-owl2-llama2-7b
Otter luodian/OTTER-Image-MPT7B
DeepSeek-VL deepseek-ai/deepseek-vl-7b-chat
Qwen2.5-VL Qwen/Qwen2.5-VL-7B-Instruct
GPT-4o gpt-4o
Gemini 2.0 gemini-2.0-flash

B.2. Evaluation on MLLM-IC-mini
Evaluation on MLLM-IC-mini is presented in Table 2, pro-
viding a compact yet informative summary of model per-
formance. The results include overall accuracy as well as
fine-grained evaluations along both the capability and cor-
ruption dimensions. The overall robustness trend remains
consistent as the full-scale dataset. This subset enables ef-
ficient comparison across models while preserving the hi-
erarchical structure of the full benchmark, thus supporting
rapid diagnosis of robustness characteristics.

B.3. Multi-dimensional Performance Heatmap
Figure 9 in the main paper illustrates DeepSeek-VL’s per-
formance across three dimensions, providing a diagnos-
tic assessment of its robustness to image corruption. This
heatmap serves as a predictive tool for estimating model
performance in specific application scenarios. For example,
in the context of photographing sports events and capturing
individual players, the model’s capability to recognize in-
stances under blurred conditions is particularly highlighted.

Furthermore, sensitivity heatmaps allow for analyzing a
model’s responsiveness to specific tasks under various cor-
ruption types. Figure 2 presents the sensitivity heatmap
for DeepSeek-VL, computed as the percentage performance
drop from severity level 1 to severity level 5. From this fig-
ure, we observe that blur significantly affects accuracy in in-



Table 2. Main tables reproduced on the streamlined subset. The overall robustness trend remains consistent, with red for weakness and
green for strength.

Overall LLa Honey Inf Trans Mini Owl Otter Deep GPT Qwen Gemini Avg
VA Bee mllm coreM GPT Seek

Clean 66.6 70.1 67.7 70.2 27.7 65.9 44.9 73.1 70.5 78.7 79.7 65.0
Corrupt 62.7 65.3 63.2 66.3 28.3 58.9 41.6 67.2 62.2 71.9 73.2 60.1

Capability

Spatial-P 55.9 58.4 55.3 56.9 25.2 50.5 32.5 59.1 57.2 67.1 64.8 53.0
Knowlg-R 48.7 55.5 50.6 51.4 27.7 48.9 42.5 57.4 65.9 69.6 71.2 53.6
Logical-R 66.1 65.2 64.9 69.5 30.1 61.0 45.6 69.1 61.3 71.5 73.7 61.6
Instance-R 67.6 69.3 68.5 74.0 25.5 62.4 38.0 69.4 57.8 73.8 73.4 61.8
Global-S 72.5 76.8 74.8 76.3 32.5 70.3 47.8 79.7 75.7 76.4 80.8 69.4

Corruption

Blur 58.1 60.4 58.4 62.0 27.2 54.0 40.4 61.7 53.6 65.3 65.3 55.1
Compress 59.2 61.4 57.3 63.2 26.5 53.3 41.8 63.7 58.6 65.7 67.4 56.2
Texture-C 59.0 61.5 58.8 62.6 26.2 54.5 40.2 63.6 61.3 66.8 69.0 56.7
Noise 60.2 63.0 61.2 64.2 29.5 53.5 41.6 63.4 63.9 66.9 71.1 58.0
Shape-C 62.2 63.9 63.0 65.3 27.3 59.7 40.4 66.5 60.7 71.9 71.6 59.3
Occlusion 64.6 67.4 64.7 67.3 28.6 61.6 40.4 69.0 63.0 75.5 74.6 61.5
Weather 63.9 67.0 65.2 67.2 28.9 60.9 40.5 69.3 66.8 75.2 75.6 61.9
Color 64.9 68.4 66.1 67.9 28.7 63.1 42.3 71.0 68.4 77.1 77.4 63.2
Geometric 65.4 69.2 67.2 68.5 29.3 64.1 42.3 71.2 69.6 77.2 78.7 63.9

stance and part recognition tasks, leading to a performance
drop of 0.25, while its impact on tasks requiring spatial per-
ception is comparatively lower, with a drop of 0.17. Fur-
thermore, geometric transformations have minimal influ-
ence on tasks involving global context sensing. While these
findings provide valuable insights, the underlying mecha-
nisms remain unexplored and warrant further investigation.

Figure 2. Sensitivity heatmap of DeepSeek-VL



Figure 3. Visualization of the 40 specific corruption dimensions in the MLLM-IC benchmark.


