
Bias-Resilient Weakly Supervised Semantic Segmentation Using Normalizing
Flows — Supplementary Material

A. More Details about Normalizing Flow

We mainly follow the DDFP [5], the normalizing flow net-
work is designed as a modified RealNVP [2]. As shown in
Fig. 1, the input feature v in the original feature space is
evenly divided into v1 and v2 at the channel level. After
passing through a invertible neural network, v1 performs
Element-Wise multiplication with v2, and then performs
Element-Wise sum with the transformed v1 to obtain v′2.
Finally, v′2 and v′1 are merged at the channel level to obtain
the final normalizing flow mapping feature z. The invertible
neural network contains two Linear layers with learnable
parameters. The invertible neural network is implemented
by FrEIA [1]. To the training stability of normalizing flow,
we add small-scale random noise on features which is also
be adapted in FlowGMM [3].
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Figure 1. Network Architecture of Normalizing Flow.

B. More Details about WSSS Settings

During WSSS training, images are randomly cropped
to 512 × 512. For prototype CAM inference, we
use multi-scale inference with image scale ratios of
{0.5, 1.0, 1.5, 2.0}. The semantic segmentation model em-
ployed is DeepLab V2 with a ResNet101 backbone, pre-
trained on the ImageNet dataset. For PASCAL VOC 2012,
we adhere to the default training settings of HSC [6], where
input images are randomly scaled to {0.5, 1.5} and cropped
to 448 × 448 for training, with a batch size of 10 and
20k iterations. For MS COCO 2014, we follow the de-
fault training settings of CLIP-ES [4], scaling input images
to {0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0} and cropping them to
481 × 481. The batch size is set to 5, with 100k iterations.
All our experiments are conduct on RTX 3090 GPU.

(τl,τh) (0.3,0.9) (0.3,0.8) (0.3,0.7) (0.3,0.6) (0.3,0.5)
mIoU(%) 69.9 70.8 72.1 72.1 71.9

(τl,τh) (0.3,0.4) (0.4,0.7) (0.5,0.7) (0.6,0.7) (0.7,0.9)
mIoU(%) 71.8 72.1 72.0 71.9 71.4

Table 1. Sensitivity analysis on filtering threshold τl and τh in
pseudo-label generation for modeling pixel feature distribution.
The bold indicates the parameters we chose finally in our work.

ξ 0.95 0.9 0.85 0.8

mIoU(%) 71.8 72.1 71.3 69.9

Table 2. Sensitivity analysis on background identification parame-
ter ξ in BSDNF. The bold indicates the parameters we chose finally
in our work.

C. Ablation study on Filtering Threshold
Tab. 1 shows the impact of filtering thresholds τl and τh
on generating pseudo-labeled and unlabeled pixel features
for training the normalizing flow. The results indicate that
having enough labeled pixel features is crucial for perfor-
mance. For instance, a high τh and low τl (e.g., τl = 0.3
and τh = 0.9) lead to significant performance degradation
due to limited labeled features and excessive unlabeled fea-
tures, which destabilize the normalizing flow training. Con-
versely, setting τl too high (e.g., τl = 0.6 and τh = 0.7) also
causes some performance drop, highlighting the importance
of introducing some unlabeled features to participate in the
training of normalizing flow.

D. Ablation study on BSDNF
Tab. 2 shows the impact of background identification pa-
rameter ξ in BSDNF. We can find that setting ξ as 0.9 can
get the best performance. A higher ξ (e.g., 0.95) results
in fewer recognized noises and insufficient noise suppres-
sion, which is an extremely conservative strategy that leads
to marginal gains; And lower ξ (e.g., 0.85 and 0.8) means
relaxing the background identification, which may result in
some true foreground pixels being suppressed and leading
to performance degradation.

1



E. More visualization about ablations and fail-
ure cases

Fig. 2 (a) shows that CCNF largely reduces false activa-
tions. FSCL further mitigates semantic bias, while BSDNF
eliminates false activations on the background. In Fig. 2 (b),
BRNF fails to activate targets with scarce class patterns. It
is because NF models rare class pixel features to the mar-
gin of distribution during training, hindering the model to
capture such patterns.
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Figure 2. Ablation visualizations and failure cases.

F. Discussions about Gaussian Mixture Model
and Normalizing Flow

The normalized flow model offers several advantages over
the Gaussian Mixture Model (GMM): Flexibility in Dis-
tribution Modeling: Normalizing Flow can capture more
diverse and flexible distributions by adjusting the transfor-
mations applied to the data, allowing it to fit a wide vari-
ety of data shapes. But GMM assumes that data points are
generated from a mixture of Gaussian distributions, which
restricts the model’s ability to fit data that doesn’t adhere to
this assumption. Scalability: Normalizing Flow supports
fully online learning and can scale to large datasets, mak-
ing it suitable for tasks requiring continuous learning and
adaptation. But GMM generally trained using batch meth-
ods like Expectation-Maximization (EM), which can be less
efficient and less scalable, especially for large or streaming
datasets. Handling of High-Dimensional Data: Normal-
izing Flow is designed to handle high-dimensional data by
using invertible transformations that maintain the structure
of the data. But GMM can struggle with high-dimensional
data, as fitting a mixture of Gaussians in such spaces can
become computationally expensive and prone to overfitting
or underfitting. Exact Likelihood Estimation: Normaliz-
ing Flow provides exact likelihood estimation for the data,
which is useful for tasks where accurate probability esti-
mates are critical. Although GMM also provides likelihood
estimates, these are based on the assumption that the data
follows a mixture of Gaussian distributions, which might
not always hold true. In summary, compared to Gaus-
sian mixture model, normalizing Flow is more suitable
for modeling pixel features of the entire dataset which
are large-scale, complex, high-dimension and dynamic.
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