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1. Demo Video

Please kindly check the Demo Video for animation results
of the reconstructed 3D avatar.

2. Details of Human Shape Reconstruction.

To enable accurate modeling of diverse human body shapes
from single-view images, we adopt a two-stage approach.
First, we sample points from the canonical SMPL-X
mesh [4] to initialize Gaussian parameters. These parame-
ters are then refined using blendshapes to capture variations
in body morphology. This method reduces parameteriza-
tion errors inherent in traditional shape parameterizations,
while enabling the neural network to learn the transforma-
tion from a reference shape to target body configurations.

As shown in Fig. S1, our framework successfully recon-
structs a wide range of human body types, including tall,
average, stocky, and slender individuals.

*“Equal contribution.
Corresponding author.

Figure S1. Reconstruction from inputs with different shapes.

3. Details of Shape Regularizer

We apply the as spherical as possible loss to penalize ex-
cessive anisotropy in Gaussian primitives, following [7]:

EASAP = ﬁ Z max (maX(Sp),T) —-T (12)

oy min(S,)

where .S}, represents the scalings of 3D Gaussian at point
p, and r is an empirical threshold value set to 3 in our
implementation. The regularization effectively discourag-
ing needle-like ellipsoids while preserving necessary shape
variation.

4. Details of the Multimodal Transformer

Our Multimodal Body-Head Transformer (MBHT) is built
on top of the recent Multimodal Transformers (MM-
Transformer) [1].

The detailed architecture of MM-Transformer is summa-
rized in Fig. S3. The 3D geometric body and head query to-
kens are fed as ¢ and semantic image feature tokens are fed
as h. MM-Transformer aggregates both features by atten-
tion mechanism with Adaptive Layer Normalization modu-
lation guided by the extracted global context features.
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Figure S2. Architecture of our HFPE for multi-scale facial feature
extraction

5. Details of Head Feature Pyramid Encoding

Given that the human head occupies a relatively small area
within the input image and is subject to spatial downsam-
pling during the encoding process, essential facial details
are frequently lost. To address this challenge, we introduce
a head feature pyramid encoding (HFPE) designed to ag-
gregate multi-scale features of DINOv2 [3]. Figure S2 il-
lustrates the architecture of HFPE.

6. Details of the Synthetic Training Dataset

To address viewpoint bias in natural videos, we supplement
training with synthetic human scans from three sources:
(1) 2K2K dataset [2] sampling 1,000 textured models, (2)
Human4DiT [6] sampling 4,324 textured characters, and
(3) 400 commercial assets from RenderPeople, culminat-
ing in 5,724 high-fidelity 3D human scans. Following
AniGS [5]’s multi-view rendering protocol, we generate 30
azimuthal views per model with uniform angular spacing
(12°intervals) under HDRI lighting conditions.

7. Effects of Canonical Space Regularization

We conduct an ablation study to assess the impact of the
canonical space regularization design. Figure S4 shows that
the as spherical as possible loss L s 4p is effective in re-
ducing semi-transparent boundary artifacts caused by Gaus-
sians with distorted shapes.

Without the as close as possible 1oss L ¢ 4 p, the recon-
struction results exhibit noticeable floating points around
the human. These results clearly demonstrate the effective-
ness of the proposed canonical space regularization losses.
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Figure S3. Detailed architecture of Multi-Modal Transformer [1].

w/ Lacap

G

w/0 Lysap w/o Lacap

W/ Lasap

Figure S4. Ablation for canonical space shape regularization.

8. More Results

Figure S5-Figure S6 showcase the reconstruction and an-
imation results for input images featuring diverse appear-
ances, clothing, and poses. Our method enables high-
fidelity, animatable human avatar reconstruction in a single
forward pass with photorealistic rendering, demonstrating



its strong generalization and effectiveness.
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Figure S5. Visual results of 3D human recons
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Figure S6. Visual results of 3D human animation from a single image (Part II). Best viewed with zoom-in.



