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A. More examples of Attack Artifacts

In Sec. 3.2, we discuss insights from the found attack arti-
facts. In this section, we offer more examples and discussion.
Fig. 1 reveals consistent patterns in the types of artifacts
that successfully manipulate model predictions. Text-based
artifacts frequently include words that share phonetic, visual,
or partial textual similarities with the target class. For in-
stance, “KID” appears as an artifact for Child, likely due
to its strong semantic association, while “BING” is linked
to Boeing, exploiting visual resemblance to the company
name. Similarly, artifacts like “K-POP” for South Korea
and “Small” for Smiling demonstrate how models latch onto
common co-occurring words rather than genuine visual cues.

Graphics with embedded text also play a significant role
in misleading models. These artifacts often feature brand
names, stylized logos, or generic text associated with the
target category. For instance, the inclusion of “Abacus” and
“Arbys” as artifacts for Airbus suggests that the model has
learned to associate certain brand names or typographic
styles with aircraft manufacturers. Likewise, “Happy Bak-
ery Cafe” and “Smile!” appearing under Smiling indicate
that models are influenced by commercial logos and positive
branding elements rather than facial features.

Graphics without text rely purely on visual resemblance,
symbols, and branding elements that loosely connect to the
target category. For example, aviation-related symbols such
as the Airbus logo and Wi-Fi icon appear under Airbus, and
basketball team logos (e.g., Portland Trail Blazers, Atlanta
Hawks) emerge under Boeing, possibly due to their circular
and wing-like shapes. Similarly, for Man and Woman, sym-
bols traditionally linked to gender (e.g., mustaches, gendered
icons, and heart-shaped logos) suggest that models encode
stereotypical visual representations rather than deeper se-
mantic understanding.

Across all target classes, these results highlight that Web
Artifact Attacks exploit both direct textual similarities and
broader visual associations, making them an effective and
adaptable attack vector. The presence of corporate logos,
branding, and culturally specific symbols (e.g., the Brazilian
flag colors, K-Pop branding for South Korea) suggests that
models are influenced by common internet-scale data dis-

tributions rather than purely semantic understanding. This
demonstrates the pervasive reliance on spurious correlations,
emphasizing the need for more robust dataset curation and
training strategies to mitigate these vulnerabilities.

B. Attack Sucess Rate by Location

In Sec. 3.1.3, we discussed how we optimize the artifact lo-
cation placement as part of our attack. Fig. 2 examines how
the placement of artifacts affects attack success rates across
different artifact types. The results indicate that artifacts posi-
tioned in the top-center region of the image consistently lead
to higher misclassification rates, with text-based artifacts
being the most effective. This suggests that vision-language
models prioritize information in certain spatial regions, likely
due to biases in pretraining datasets, where text frequently
appears near the top of images (e.g., headlines, labels, or
watermarks). Graphics with embedded text also show higher
success rates in the top-center, though to a lesser extent than
pure text, while graphics without text have a more uniform
but overall lower effect. These findings highlight the impor-
tance of spatial biases in model vulnerability and suggest
that adversarial manipulations may be optimized further by
strategically placing artifacts in regions that models inher-
ently attend to more strongly.

C. Attack Success by Dataset

In Sec. 4.1, we report the average performance over 5
datasets. In this Section, we break down performance by
dataset. Fig. 3 shows that Web Artifact Attacks achieve
higher success rates in datasets containing human-related at-
tributes (FairFace [2], CelebA [3]) compared to non-human
classification tasks (Aircraft [4], Country211 [6]). This trend
is particularly pronounced for text-based artifacts, which
consistently lead to the highest misclassification rates in
human-related datasets. One possible explanation is that
vision-language models are pretrained on web-scale data
where text often co-occurs with human-related concepts, re-
inforcing spurious associations between textual artifacts and
human characteristics. In contrast, non-human tasks like
aircraft recognition rely more on fine-grained visual details,
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Figure 1. Examples of Attack Artifacts categorized into three types: graphics without text (Agraphics-no-text
c∗ ), graphics with embedded text

(Agraphics-text
c∗ ), and unrelated text (Atext

c∗ ). Each row corresponds to a different target class showing artifacts that models have learned to
associate with these concepts. Notably, text artifacts need not match the class exactly, while graphical symbols can represent indirect but
learned associations. These findings highlight the diverse range of artifacts that can manipulate model predictions.

Figure 2. Effect of artifact placement on attack success rates Heatmaps show success rates when artifacts are positioned in different
regions of the image for three artifact types: graphics with text (left), graphics without text (middle), and text (right). Across all artifact
types, placing the artifact in the top-center region consistently yields the highest success rates, particularly for text-based attacks, which
reach up to 70% success in this position.
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Figure 3. Artifact attack success rates across datasets with human-related and non-human-related tasks. Each subplot corresponds to a
different artifact type: graphics with text (left), graphics without text (middle), and text (right). Across all artifact types, human-related tasks
(e.g., FairFace, CelebA) exhibit higher vulnerability compared to non-human tasks (e.g., Aircraft, Country211), with text-based artifacts
being the most effective overall.

Figure 4. Effect of artifact size and transparency on attack success rates. The top row shows examples of artifacts shrinking in size
(Factor Shrink) from 10 to 40, while the bottom row illustrates decreasing artifact opacity (Transparency) from 1.0 (fully visible) to 0.1
(highly transparent). The corresponding line plots on the right show the attack success rates across different artifact types. Smaller and more
transparent artifacts consistently reduce attack effectiveness, but text-based artifacts remain the most effective even under these constraints.

making them less susceptible to artifacts that exploit text or
graphical elements. These findings suggest that Web Artifact
Attacks pose a greater risk to applications involving human-
centric classifications, where models may rely more heavily
on text-based biases.

D. Effect of Artifact’s Transparency and Size

In Sec. 4.1., we fix the artifact size to 10th of the image
sizs and transparency to 1.0. In this Section, we ablate

both settings. Fig. 4 evaluates how reducing artifact size
and transparency affects attack success rates. The results
show that as artifacts become smaller or more transparent,
their effectiveness declines across all artifact types, with text-
based artifacts remaining the most resilient. This suggests
that larger and more visible artifacts are more likely to be
leveraged by the model, while smaller or faded artifacts are
either ignored or contribute less to misclassification. No-
tably, the steepest decline occurs for graphics-based artifacts,
particularly those without text, indicating that purely visual
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Figure 5. Examples of generated captions for Web Artifact Attacks mitigation. Each image represents a graphic artifact, accompanied
by its corresponding caption generated by a vision-language model. These captions are then included in the prompt to mitigate the attack.

artifacts are more sensitive to reductions in size and visibility.
These findings highlight that while reducing artifact saliency
can mitigate their impact, text-based artifacts still pose a
considerable threat, even when minimally visible.

E. Descriptions of Artifacts for Mitigation

Fig. 5 illustrates how automatically generated captions are
incorporated into our artifact-aware prompting strategy (see
Sec 5) to mitigate Web Artifact Attacks. Inspired by prior
work [1], which demonstrated that Vision-Language Models
(VLMs) can adjust their attention when given more informa-
tive prompts, we extend this approach to graphical artifacts.
Unlike text-based artifacts, which can be directly embedded
into prompts, graphical artifacts lack an explicit textual rep-
resentation, making them harder for the model to explicitly
consider. To address this, we generate structured descrip-
tions of graphical symbols and append them to the input
prompt, ensuring that the model processes them explicitly
rather than forming unintended associations.

The captions in Fig. 5 serve this purpose by neutralizing
spurious correlations and guiding the model toward actual
visual semantics. For example, instead of allowing the model
to infer associations based on dataset biases (e.g., linking
a hazard symbol to danger-related concepts), the caption
describes it as “a yellow sign with a black hazard symbol”,
removing any loaded interpretation.

F. Beyond Visual Recognition
While our primary focus was on classification tasks for the
sake of clarity and control, we also extend our attacks to the
image retrieval task using the Flickr30K dataset [5]. On Top-
1 Image-to-Text retrieval, our attacks achieve an 83.4% suc-
cess rate on Graphics w/ text, 63.8% success rate on Graphics
wo/ text, and 63.4% on Text, demonstrating their ability to
generalize to applications beyond classification.
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