
Appendix for DictAS: A Framework for Class-Generalizable Few-Shot Anomaly
Segmentation via Dictionary Lookup

This appendix includes the following five parts: 1) More experimental details (e.g. datasets, self-supervised training) in
Section A; 2) Detailed description of SOTA methods and comparison with contemporaneous approaches (e.g., MetaUAS,
ResAD) in Section B; 3) Additional ablation studies (e.g., hyperparameters, auxiliary datasets, data transformations) in
Section C; 4) Limitations of our methods in Section D; 5) Presentation of more detailed quantitative and qualitative results
of few-shot anomaly classification / segmentation in Section E.

A. Experimental Details
A.1. Details of the Datasets

Table A.1. Key statistics of the datasets. (a, b) in the training/testing sets denotes the number of normal and abnormal samples, respectively.
|C| is the number of categories. Note that anomaly segmentation datasets have only normal images in the training set.

Domain Dataset Category Modality |C| Testing Set Training Set Usage

Industrial

MVTecAD [1] Obj &texture Photography 15 (467, 1258) (3629, 0) Industrial defect detection
VisA [21] Obj Photography 12 (962, 1200) (8659, 0) Industrial defect detection

MVTec3D [2] Obj Photography+Depth 10 (249, 948) (2656, 0) Industrial defect detection
MPDD [11] Obj Photography 6 (176, 282) (888, 0) Industrial defect detection
BTAD [15] Obj Photography 3 (451, 290) (1799, 0) Industrial defect detection

Medical
RESC [8] Retina Photography 1 (1041, 764) (4297, 0) Retinal Lesion Detection

BrasTS [14] Brain Radiology(MRI) 1 (828, 1948) (4211, 0) Brain Tumor Segmentation

In this study, we conduct extensive experiments on 7 public datasets covering industrial and medical domains to assess the
effectiveness of our methods, including MVTecAD [1], VisA [21], MVTec3D [2], MPDD [11], BTAD [15], RESC [8] and
BrasTS [14]. The key statistics for these datasets are demonstrated in Table A.1. In this study, normal reference images are
randomly selected from the training set, and all samples from the testing set are used to evaluate the model’s performance.
By default, all samples in the VisA training set are treated as seen classes for self-supervised training and are subsequently
tested on other datasets. For VisA itself, the training set in MVTeAD is used as an auxiliary training dataset.

A.2. Details of Self-Supervised Training
This subsection further elaborates on the online construction of auxiliary data for self-supervised training.

In the self-supervised training stage,both query and reference images are dynamically constructed from raw images be-
longing to any seen class. Note that this process is conducted online. Specifically, given a raw image X, we apply random
transformations (e.g., random rotation) to generate a corresponding reference image, simulating the few normal reference
images Xn available in the real anomaly segmentation process. In DictAS, we by default use Geometric Transformations
and Occlusion Transformations as shown in Figure A.1. Detailed descriptions and parameters for each transformation type
are provided in Listing 1. Additional ablation studies investigating the effect of different transformation types can be found
in Section C.

For the query image Xq , it is derived from the raw image using the anomaly synthesis algorithm proposed in DRAEM
[18]. The detailed strategy for synthesizing the query image during self-supervised training is described in Algorithm A.
Alongside the synthesized image, the pixel-level pseudo-label G and the image-level pseudo-label yq are also generated
using the Berlin noise mask. These pseudo-labels are used to compute the query contrastive loss and the text alignment loss,
both of which act as regularization terms during self-supervised training.
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Figure A.1. Acquisition of the auxiliary training data. Given a raw image without pixel-level annotations, the query image is generated
using an anomaly synthesis algorithm [18], while the normal reference image is obtained via data transformations (e.g., random rotation).
Both natural images shown in (a) and industrial images shown in (b) can be utilized as sources to construct auxiliary training data.

1 import albumentations as A
2 import cv2
3

4 img_trans_for_reference = A.Compose([
5 A.RandomRotate90(p = 1),
6 A.Rotate(limit=[30, 270], p=1.0),
7 A.HorizontalFlip(p=0.5),
8 A.VerticalFlip(p=0.5),
9 A.GridDropout(ratio=0.3, p=0.5),

10 A.CoarseDropout(max_holes=8, max_height=32, max_width=32, p=0.5),
11 ], is_check_shapes=False)
12 X_raw = cv2.imread("raw_img_path") # Read the raw image
13 # Perform data transformation on the raw image to simulate the reference image.
14 X_reference = img_trans_for_reference(img = X_raw)

Listing 1. Data transformation for generating the reference image in the self-supervised training stage.

Algorithm A Anomaly synthesis strategy for generating the query image in the self-supervised training stage.
Input: Raw image X; Anomaly source image A; Perlin noise generator P ; Image size H and W ; Noise resolution rx and
ry; Blending parameter γ; Binarization threshold λ
Output: Query image Xq , pixel-level pseudo-label G, image-level pseudo-label yq .

1: while True do
2: G← where(P (H,w, rx, ry) > λ)
3: MA ← G ×X
4: MA ← 1 - MA

5: Xq ← γ(MA ⊙A) + (1− γ)(MA ⊙X) +MA ⊙X
6: end while
7: if SUM(G) is 0 then
8: yq ← 0
9: else

10: yq ← 1
11: end if
12: return Xq , G, yq
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A.3. Details of Text Prompt Design
In this work, two types of text prompts (normal descriptions and anomaly descriptions) are fed into the text encoder of
CLIP to generate text embeddings. The global image representation obtained from the Retrieved Result Fl

r is constrained
to align with the normal text embedding space, thereby enhancing anomaly discrimination capability. Since the design of
text prompts is not the focus of this study, we directly follow the design principles of WinCLIP [10] (i.e. text prompt
ensemble). Specifically, to obtain normal text embeddings, the object category name (e.g., bottle) and state are inserted into
predefined prompt templates to generate multiple semantically similar normal prompts. These prompts are encoded by the
text encoder, and the resulting embeddings are averaged to form the final normal text representation. Similarly, the abnormal
text embeddings are constructed in the same manner by replacing the state with an anomalous one. The details of the prompt
template and the settings of normal/abnormal [state] are illustrated in Figure A.2.

Template-level
"a photo of a/the [state][class]."

"a good photo of the [state][class]."

"a photo of my [state][class]."

"a photo of the [state][class]."

"a photo of a/the [state][class]."

"a photo of a/the small [state][class]."

"a bad photo of a/the [state][class]."

"a low resolution photo of a/the [state][class]."

State-level (normal)

"flawless [class]"

"perfect [class]"

"unblemished [class]"

"normal [class]"

"[class] without flaw"

"[class] without defect"

"[class] without damage"

State-level (abnormal)

"damaged [class]"

"broken [class]"

"abnormal [class]"

"imperfect [class]"

"[class] with flaw"

"[class] with defect"

"[class] with damage"

"a cropped photo of a/the [state][class]."

"a bright photo of a/the [state][class]."

"a dark photo of a/the [state][class]."

"a black and white photo of a/the [state][class]."

"a jpeg corrupted photo of a/the [state][class]."

"a close-up photo of the [state][class]."

"There is a/the [state][class] in the scene."

"This is one [state][class] in the scene."

Figure A.2. Detailed design of prompt template and normal/abnormal [state] words for text prompt ensemble.

A.4. Details of Implementation
Similar to recent state-of-the-art FSAS methods [3, 10, 13], we adopt the CLIP model (ViT-L-14-336), pretrained by OpenAI
[16], as the default backbone for our DictAS. All input images are uniformly resized to 336× 336 before being fed into the
model. During training, we extract the 6th, 12th, 18th, and 24th layers from the frozen image encoder as patch-level features
similar to [3]. To increase the receptive field, average pooling with a kernel size of 3 is applied to the patch-level features
extracted from the CLIP image encoder. The regularization loss balancing coefficients, λ1 and λ2, are both set to 0.1 by
default. During the auxiliary training phase, two types of data transformations—Geometric Transformations (e.g., Random
Rotation) and Occlusion Augmentations (e.g., Random GridDropout)—are applied to the raw images to generate reference
images. For computational efficiency, the number of reference images is set to k = 1 during training. During inference,
k ≥ 1 normal reference images are used as visual prompts. To ensure a fair comparison, all methods are evaluated using the
same k normal reference images. Each experiment is repeated five times with different random seeds. DictAS is trained for
30 epochs using the Adam optimizer [12], with an initial learning rate of 0.0001 and a batch size of 24. All experiments are
conducted on a single NVIDIA RTX 3090 GPU with 24 GB of memory.

B. State-of-the-art Methods
B.1. Method Introduction and Comparison Details
• WinCLIP [10] is one of the earliest works based on CLIP for the zero/few shot anomaly segmentation task. Since the

vanilla CLIP [16] does not align text with fine-grained image features during pretraining, it addresses this limitation by
dividing the input image into multiple sub-images using windows of varying scales. The final language-guided anomaly
segmentation results are derived by harmoniously aggregating the classification outcomes of sub-images corresponding
to the same spatial locations. To leverage the few normal reference images, it also employs memory bank-based nearest
neighbor retrieval to obtain visually guided anomaly maps. For a fair comparison, we report the results using ViT-L-14-336
as the backbone with an input resolution of 336× 336, based on the reproduced code from [20].

• APRIL-GAN [3] adopts the handcrafted textual prompt design strategy from WinCLIP. However, for aligning textual and
visual features, it introduces a linear adapter layer to project fine-grained patch features into a joint embedding space. After
being trained on real anomalous samples with pixel-level, it can directly generalize to unseen classes. A memory-bank
strategy like WinCLIP [10] is also adopted to enhance text-image alignment results. For a fair comparison, we retrained
the model using the official code on ViT-L-14-336 with a resolution of 336 × 336 and re-evaluated it across all industrial
and medical datasets.
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• RegAD [9] first proposed a feature registration strategy using a spatial transformer network for class-generalizable FSAS.
With a meta-learning training approach, it demonstrates strong generalization to unseen classes. However, its performance
on unseen category objects heavily depends on extensive augmentation of normal reference images and utilizes distribution
estimation to generate the final anomaly map, making it less memory-efficient. In this work, we retrained RegAD using the
same auxiliary dataset as our DictAS, i.e., trained on all classes of the VisA training set and tested on other datasets. For
evaluation on VisA, the weights were obtained using MVTecAD as the auxiliary training set. Since RegAD has a specific
backbone-dependent network structure, the backbone and resolution from the original paper were adopted (ResNet-18,
224× 224).

• Fastrecon [5] models class-generalizable FSAS as a feature reconstruction problem based on linear regression. By design-
ing a distribution regularization term and solving the analytical solution, it demonstrates excellent cross-category general-
ization in a training-free manner. However, as the number of reference images increases, the linear model may theoretically
overfit arbitrary features, which means that Fastrecon still faces the challenge of over-reconstruction. In this version, we
used the official code and backbone (wide-resnet50, 336×336) from the original paper and tested it across all datasets.

• Fastrecon+ [5] is a reimplementation of Fastrecon, utilizing the CLIP image encoder as the feature extractor. For a fair
comparison, ViT-L-14-336 with a resolution of 336 × 336 is adopted. Following their original paper, we extracted the
two intermediate patch-level features (the 12th and 18th layers) and concatenated them along the embedding dimension to
construct new features. The other experimental hyperparameters are set to be the same as those in the original paper.

• AnomalyGPT [7] is a class-generalizable FSAS method that integrates a large language model for anomaly segmentation
and supports multi-turn dialogues with users. It employs supervised training using synthetic anomaly data, allowing the
model to generalize to new classes. We conducted experiments using the official code and evaluated the model’s FSAS
performance in the same way as our DictAS. To use the officially pre-trained weights, the original backbone and input
image resolution were adopted (ImageBind-Huge, 224× 224).

• PromptAD [13] is a class-dependent FSAS method, which is different from other CLIP-based approaches. It directly
trains on normal reference images for each class and evaluates on the test set of the same object category. Moreover, it
proposes a one-class prompt learning method for few-shot anomaly segmentation. Although it outperforms most FSAS
methods, the need for fine-tuning on each category limits its practicality in scenarios involving data privacy or rapidly
changing environments. For fairness in comparison, we retrained the model on ViT-L-14-336 using an input resolution of
336× 336.

• MetaUAS [6] proposes viewing FSAS as a segmentation change problem. By leveraging meta-learning training on a
synthetic dataset, it enables the acquisition of a universal model capable of detecting anomalies in unseen classes. However,
it is only applicable to situations where a single normal sample is used as the visual prompt (i.e., 1-shot). In this paper, we
use it as a concurrent method and compare it with our DictAS.

• ResAD [17] proposes using learned residual feature distributions to reduce feature variations across different classes for
class-generalizable FSAS. It ultimately transforms the anomaly segmentation problem into an out-of-distribution detection
problem using a Feature Distribution Estimator, achieving strong performance on unseen classes. In this paper, we employ
it as a concurrent method and compare its performance with our DictAS.

B.2. Comparison with Concurrent Methods

Table A.2. Comparison with the concurrent state-of-the-art methods. The pixel-level AUROC (%) is reported, and the best results are
highlighted in bold. The experimental results of MetaUAS and ResAD are taken from their original papers.

Backbone MVTecAD [1] VisA [21] BTAD [15] MVTec3D [2] BrasTS [14]

1-shot
MetaUAS [6] EfficientNet-b4 94.6 92.2 — — —

DictAS ViT-B-16 97.1 97.3 — — —
DictAS ViT-L-14-336 97.7 98.0 97.4 97.5 96.5

2-shot
ResAD [17] ImageBind-Huge 95.6 95.1 96.4 97.5 94.3

DictAS ViT-L-14-336 98.2 98.5 97.9 97.9 96.4

4-shot
ResAD [17] ImageBind-Huge 96.9 97.5 96.8 97.9 96.1

DictAS ViT-L-14-336 98.6 98.8 98.0 98.4 97.3

Table A.2 compares our DictAS with two contemporary state-of-the-art methods, MetaAUS [6] and ResAD [17]. As
our method currently applies only to transformer-based architectures, we selected the CLIP pre-trained backbones with
the smallest (ViT-B-16) and largest (ViT-L-14-336) parameter counts for comparison. The experimental results show that,
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Figure A.3. (a) Ablation study on the weight coefficient λ1 of the query contrastive constraint. (b) Ablation study on the weight coefficient
λ2 of the text alignment constraint. The experiments are conducted on the MVTecAD and BTAD datasets under the 4-shot setting and the
metric pixel-level AUROC and PRO are reported.

Table A.3. Ablation on different auxiliary datasets under 4-shot
setting (%).

Auxiliary
Dataset

MVTecAD BTAD

AUROC PRO AP AUROC PRO AP

VisA [21] 98.6 95.1 66.8 98.0 83.3 66.8

BrasTS [14] 98.3 95.0 66.2 97.9 83.0 66.2

Ade20K [19] 98.4 95.1 66.5 98.1 83.5 66.8

VOC2012 [4] 98.3 94.9 66.4 98.2 83.4 66.9

Table A.4. Ablation on the scale of auxiliary dataset VisA under
4-shot setting (%).

Scale MVTecAD BTAD

AUROC PRO AP AUROC PRO AP

15% 96.8 92.0 62.8 96.1 80.2 63.3
35% 97.3 92.9 63.5 96.6 81.7 63.8
55% 98.0 93.5 64.6 97.1 82.0 64.2
75% 98.3 94.6 66.0 97.6 82.9 66.5
95% 98.5 95.1 66.6 98.0 83.2 66.7

100% 98.6 95.1 66.8 98.0 83.3 66.8

among the reported results, our DictAS achieves state-of-the-art performance in FSAS. Notably, despite using fewer backbone
parameters than ResAD (which adopts ImageBird-Huge), our ViT-L-14-336-based DictAS performs better, highlighting its
effectiveness.

C. Additional Ablations
C.1. Ablation on Hyperparameters
In this subsection, we conduct an ablation study on the weighting coefficients λ1 and λ2, which correspond to the two query
discriminative regularization terms in our method. As shown in Figure A.3, the model achieves optimal performance when
both hyperparameters are set to approximately 0.1. As the weighting coefficients gradually increase to the equilibrium point
(0.1), both AUROC and AP exhibit an upward trend. Beyond this point, the model’s performance on unseen classes begins
to gradually decline.

Reason Analysis. Before analyzing the reasons, it is crucial to clarify the pseudo-labels used during the training process of
DictAS under the self-supervised learning paradigm. The main loss, i.e., the query loss, is computed using all normal patches
in the query image, where the query image feature itself serves as the pseudo-label. In contrast, the two query discrimina-
tive regularization terms use the synthesized mask G as the pseudo-label, which indicates the location of the synthesized
anomaly within the query image.From this perspective, the query loss enables the model to acquire a category-agnostic dic-
tionary querying capability, thereby facilitating generalization to unseen categories. Meanwhile, the two regularization losses
leverage the synthetic anomaly information to enhance anomaly discriminability, making the boundary between normal and
anomalous regions more distinguishable. Therefore, moderate regularization (e.g., λ1 = λ2 = 0.1) proves beneficial in the
early training stages, as it improves the model’s ability to distinguish anomalies without overwhelming the dictionary query-
ing mechanism. However, as the influence of the regularization losses increases, the model’s reliance on the dictionary-based
querying diminishes. This shift causes the model to focus more on discriminating the synthesized anomalies during training,
leading to a loss of generalization capability.
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Table A.5. The details of different types of data transformations .

Type Transformation Parameters

Geo. Trans.

RandomRotate90 p = 1.0
Rotate 30◦ ∼ 270◦, p = 1.0
HorizontalFlip p = 0.5
VerticalFlip p = 0.5

Color Trans. RandomBrightnessContrast p = 0.5
HueSaturationValue hue = 20, sat = 30, val = 20, p = 0.5

Noise Dist. GaussNoise var = 10.0 ∼ 50.0, p = 0.5
MotionBlur blur limit = 5, p = 0.5

Occl. Aug. GridDropout ratio = 0.3, p = 0.5
CoarseDropout max holes = 8,max size = 32× 32, p = 0.5

Table A.6. Ablation on different types of data transformations.

Geo. Trans. Color Trans. Noise Dist. Occl. Aug. AUROC PRO AP

✔ ✘ ✘ ✘ 98.3 94.9 66.0
✘ ✔ ✘ ✘ 98.2 94.7 64.7
✘ ✘ ✔ ✘ 98.1 94.7 64.8
✘ ✘ ✘ ✔ 98.2 94.8 64.9
✘ ✔ ✔ ✘ 97.9 94.1 64.0
✔ ✘ ✘ ✔ 98.6 95.1 66.8
✔ ✔ ✘ ✘ 98.2 94.7 64.6
✔ ✘ ✔ ✘ 98.2 94.6 64.5
✔ ✔ ✔ ✔ 98.3 94.8 65.5

C.2. Ablation on Auxiliary Datasets
As mentioned above, our DictAS by default uses the industrial dataset VisA [21] as an auxiliary dataset for self-supervised
training and then directly performs few-shot anomaly segmentation on unseen classes in other datasets. This setup is designed
to follow the settings of existing methods for a fairer comparison [3, 7, 17]. Can our method use a more general dataset for
auxiliary training? If so, how does the scale of the auxiliary data affect the model’s FSAS performance? We will address
these two questions in the following discussion.

Domain of Auxiliary Datasets. In Table A.3, we investigate the impact of using auxiliary datasets from different do-
mains for self-supervised training and evaluate their 4-shot performance on MVTecAD [1] and BTAD [15]. Specifically, the
VisA dataset [21] from the industrial domain, the BrasTS dataset [14] from the medical domain, and the Ade20K [19] and
VOC2012 [4] datasets from natural scenes are used as auxiliary datasets. For the natural scene datasets Ade20K [19] and
VOC2012 [4], we randomly select samples identical to those in the VisA training set for auxiliary training. Since each natural
image may contain multiple categories, we use object to replace [class] in the text prompts. Note that our auxiliary datasets
do not require pixel-level annotations. Experimental results show that our DictAS is not sensitive to the auxiliary datasets
and demonstrates strong robustness across industrial, medical, and natural scene domains. It is attributed to the use of the
self-supervised learning paradigm, which demonstrates that DictAS has learned a generalizable dictionary lookup capability
and successfully transferred this ability to the class-generalizable FSAS task.

Scale of Auxiliary Datasets. In Table A.4, we evaluate the impact of the auxiliary dataset size on model performance.
Specifically, (15%, 35%, 55%, 75%, 95%) of the VisA training set samples are randomly selected for self-supervised training,
and the FSAS performance on MVTecAD and BTAD is assessed under the 4-shot setting. The experimental results show
that as the dataset size increases, the FSAS performance of the proposed DictAS also improves. Even when trained on only
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half or less of the auxiliary data, the proposed DictAS already achieves satisfactory results, highlighting the efficiency of our
training strategy. Moreover, DictAS demonstrates promising potential with larger-scale training data, which will be explored
in our future work.

C.3. Ablation on Types of Data Transformations
In this subsection, we conduct an ablation study on the types of data transformations used to generate reference images in the
self-supervised training process.

Specifically, we predefined four types of data transformations: Geometric Transformations (Geo. Trans.), Color Trans-
formations (Color Trans.), Noise Disturbance (Noise Dist.), and Occlusion Augmentation (Occl. Aug). The details and
hyperparameters of different types of data transformations are presented in Table A.5. To investigate the impact of different
transformation types on the experiment, we conducted an ablation study on these four types of transformations, as shown
in Table A.6. It can be observed that when only a single transformation type is used, Geometric Transformations provide
the greatest performance gain for FSAS, especially in terms of pixel-level AP (66.0%). This is because applying geomet-
ric transformations to raw images, such as random rotation and random flipping, simulates the most significant variations
among normal reference images in real-world anomaly segmentation. During training, self-supervised learning enables the
model to capture the correspondence between query and reference images under geometric transformations, which helps
DictAS enhance its robustness to different reference images. Furthermore, among different transformation combinations, the
combination of Geometric Transformations and Occlusion Augmentation achieved the best results, with scores of 98.6% in
AUROC, 95.1% in PRO and 66.8% in AP. We attribute this to the occlusion simulating missing parts in real scenarios, further
enhancing the robustness of the dictionary lookup.

Considering the model’s performance, this work defaults to using Geometric Transformations and Occlusion Augmenta-
tion as the data transformation methods.

D. Limitations
Our DictAS has demonstrated the state-of-the-art ZSAD performance in seven industrial and medical datasets. However, it
still faces several limitations in practical applications: 1) Our method aims to learn the dictionary lookup ability of human
inspectors when encountering unseen classes. While this enables generalization to novel categories, the dictionary lookup
task imposes a limitation, requiring a few normal reference images to construct the dictionary, making it unsuitable for zero-
shot tasks; 2) This work does not investigate the impact of larger-scale auxiliary datasets on the model’s FSAS performance.
However, ablation studies on the VisA dataset suggest that DictAS has the potential to leverage large-scale datasets (even at
an internet scale) for self-supervised training, enabling continuous performance improvement. In the future, we will further
enhance the FSAS capability of DictAS by incorporating human prior knowledge, while enabling zero-shot generalization.
Moreover, larger-scale auxiliary data will be leveraged to enhance the dictionary lookup capability of DictAS.

E. Detailed FSAS Results
In this section, we present a detailed comparison of different SOTA methods under the 1-, 2-, and 4-shot settings. As
mentioned in the main text, since DictAS primarily focuses on anomaly segmentation, pixel-level AUROC, PRO, and AP are
used as the default evaluation metrics. As a complement, this section also reports image-level AUROC, F1-Max, and AP to
assess the performance of few-shot anomaly classification. The classification score for each image is obtained following the
same strategy as APRIL-GAN [3].
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E.1. Detailed few-shot anomaly classification results

Table A.7. Performance comparison of anomaly classification with other SOTA methods under the 1-shot setting. The best results
are highlighted in red, and the second-best results are marked in blue. The symbol † denotes methods based on CLIP, and (a,b,c) represents
image-level (AUROC, F1-max, AP). To ensure a fair comparison, all methods use the same normal reference images, and all CLIP-based
methods employ the same backbone (ViT-L-14-336) and input resolution (336× 336).

Datasets
RegAD [9]
(ECCV 22)

AnomalyGPT [7]
(AAAI 24)

FastRecon [5]
(ICCV 23)

† FastRecon+ [5]
(ICCV 23)

†WinCLIP [10]
(CVPR 23)

† APRIL-GAN [3]
(CVPR 23)

† PromptAD [13]
(CVPR 24)

† DictAS
(Ours)

Industrial Datasets (AUROC, F1-Max, AP)

MVTecAD (73.3, 87.1, 87.2) (92.8, 94.3, 96.1) (83.7, 90.9, 91.6) (92.0, 93.4, 95.6) (92.6, 92.0, 96.1) (91.1, 90.9, 95.6) (93.0, 93.7, 96.6) (96.1, 94.4, 98.3)
VisA (69.3, 76.2, 72.2) (86.4, 84.4, 87.4) (80.1, 82.3, 83.1) (81.0, 81.4, 82.3) (84.8, 82.8, 87.0) (87.1, 83.1, 90.5) (85.2, 83.3, 86.8) (89.5, 85.9, 91.0)

MVTec3D (54.0, 88.4, 81.7) (76.0, 90.3, 91.9) (63.5, 89.6, 86.5) (72.8, 90.8, 89.9) (79.8, 90.3, 93.1) (75.3, 89.8, 91.1) (71.2, 90.1, 89.8) (78.6, 91.1, 93.4)
MPDD (47.9, 72.9, 61.5) (72.4, 79.3, 75.9) (62.2, 77.5, 67.9) (76.5, 80.3, 76.1) (79.9, 80.9, 82.5) (75.1, 80.1, 80.8) (79.3, 81.6, 83.5) (81.3, 83.5, 82.6)
BTAD (84.4, 78.2, 80.5) (93.6, 89.7, 94.6) (86.2, 77.7, 81.7) (93.7, 92.0, 95.0) (89.5, 81.8, 86.3) (86.5, 84.0, 88.5) (93.4, 90.4, 94.4) (96.2, 92.8, 97.3)

Average (65.8, 80.5, 76.6) (84.2, 87.6, 89.2) (75.1, 83.6, 82.1) (83.2, 87.6, 87.8) (85.3, 85.5, 89.2) (83.0, 85.6, 89.3) (84.4, 87.8, 90.2) (88.3, 89.5, 92.5)

Medical Datasets (AUROC, F1-Max, AP)

RESC (55.9, 60.4, 46.6) (86.8, 76.2, 83.4) (76.8, 72.5, 59.4) (82.8, 71.3, 80.4) (57.4, 60.7, 48.1) (77.3, 69.5, 69.7) (87.4, 78.2, 84.3) (89.9, 79.0, 89.6)
BrasTS (58.4, 83.0, 73.2) (73.1, 85.8, 82.0) (61.8, 84.3, 75.7) (76.2, 86.5, 85.1) (86.6, 87.4, 92.5) (86.8, 88.9, 92.5) (81.7, 87.5, 88.5) (85.8, 88.0, 92.9)
Average (57.2, 71.7, 59.9) (79.9, 81.0, 82.7) (69.3, 78.4, 67.6) (79.5, 78.9, 82.7) (72.0, 74.0, 70.7) (82.1, 79.2, 81.1) (84.6, 82.8, 86.4) (87.8, 83.5, 91.2)

Table A.8. Performance comparison of anomaly classification with other SOTA methods under the 2-shot setting. The best results
are highlighted in red, and the second-best results are marked in blue. The symbol † denotes methods based on CLIP, and (a,b,c) represents
image-level (AUROC, F1-max, AP). To ensure a fair comparison, all methods use the same normal reference images, and all CLIP-based
methods employ the same backbone (ViT-L-14-336) and input resolution (336× 336).

Datasets
RegAD [9]
(ECCV 22)

AnomalyGPT [7]
(AAAI 24)

FastRecon [5]
(ICCV 23)

† FastRecon+ [5]
(ICCV 23)

†WinCLIP [10]
(CVPR 23)

† APRIL-GAN [3]
(CVPR 23)

† PromptAD [13]
(CVPR 24)

† DictAS
(Ours)

Industrial Datasets (AUROC, F1-Max, AP)

MVTecAD (76.6, 88.8, 88.9) (94.4, 95.0, 97.0) (88.9, 93.6, 94.7) (94.2, 94.5, 96.5) (93.8, 93.0, 96.6) (90.1, 91.0, 95.5) (95.4, 95.1, 97.7) (97.4, 96.6, 98.9)
VisA (70.4, 75.8, 73.6) (87.2, 84.1, 88.8) (84.6, 82.9, 86.7) (81.1, 81.8, 81.3) (83.5, 81.3, 85.9) (86.6, 82.6, 90.4) (85.1, 83.0, 87.0) (90.2, 86.6, 91.3)

MVTec3D (55.1, 88.5, 82.0) (81.2, 91.5, 94.2) (65.5, 89.6, 88.0) (76.9, 91.2, 92.2) (81.4, 90.5, 94.5) (75.8, 90.0, 91.5) (75.6, 90.8, 92.0) (82.4, 91.2, 94.7)
MPDD (52.5, 73.6, 62.2) (79.7, 82.1, 81.1) (67.0, 78.4, 70.6) (81.8, 83.0, 81.4) (81.5, 81.0, 83.3) (75.1, 79.4, 80.2) (83.3, 83.6, 88.2) (84.9, 86.4, 85.4)
BTAD (88.9, 89.2, 92.1) (93.4, 89.9, 95.0) (89.4, 83.2, 86.4) (93.8, 90.3, 94.9) (90.7, 84.2, 87.6) (86.1, 84.2, 88.5) (92.7, 89.0, 94.4) (95.6, 92.3, 96.6)

Average (68.7, 83.2, 79.8) (87.2, 88.5, 91.2) (79.1, 85.5, 85.3) (85.6, 88.2, 89.3) (86.2, 86.0, 89.6) (82.7, 85.4, 89.2) (86.4, 88.3, 91.9) (90.1, 90.6, 93.4)

Medical Datasets (AUROC, F1-Max, AP)

RESC (59.4, 62.0, 48.0) (87.8, 78.2, 83.5) (77.6, 72.7, 60.6) (87.6, 75.7, 84.9) (60.3, 61.0, 50.6) (78.3, 70.8, 71.0) (89.2, 79.6, 85.9) (91.6, 80.6, 90.9)
BrasTS (57.4, 83.5, 72.0) (74.9, 86.6, 83.3) (65.4, 84.6, 77.4) (75.8, 87.2, 83.6) (87.0, 88.0, 93.4) (87.5, 89.2, 93.0) (83.0, 88.1, 89.3) (85.5, 88.6, 92.4)
Average (58.4, 72.8, 60.0) (81.3, 82.4, 83.4) (71.5, 78.7, 69.0) (81.7, 81.5, 84.3) (73.6, 74.5, 72.0) (82.9, 80.0, 82.0) (86.1, 83.8, 87.6) (88.6, 84.6, 91.7)

Table A.9. Performance comparison of anomaly classification with other SOTA methods under the 4-shot setting. The best results
are highlighted in red, and the second-best results are marked in blue. The symbol † denotes methods based on CLIP, and (a,b,c) represents
image-level (AUROC, F1-max, AP). To ensure a fair comparison, all methods use the same normal reference images, and all CLIP-based
methods employ the same backbone (ViT-L-14-336) and input resolution (336× 336).

Datasets
RegAD [9]
(ECCV 22)

AnomalyGPT [7]
(AAAI 24)

FastRecon [5]
(ICCV 23)

† FastRecon+ [5]
(ICCV 23)

†WinCLIP [10]
(CVPR 23)

† APRIL-GAN [3]
(CVPR 23)

† PromptAD [13]
(CVPR 24)

† DictAS
(Ours)

Industrial Datasets (AUROC, F1-Max, AP)

MVTec-AD (83.4, 89.8, 91.7) (97.0, 95.9, 98.0) (94.2, 90.9, 90.4) (96.2, 95.3, 97.2) (95.5, 94.0, 97.3) (91.0, 91.6, 95.9) (95.9, 95.2, 97.5) (98.8, 98.2, 99.5)
VisA (72.0, 77.1, 73.9) (91.4, 87.2, 92.6) (68.5, 77.1, 72.6) (84.4, 82.6, 85.1) (85.7, 82.8, 87.8) (87.2, 83.3, 91.1) (87.5, 83.9, 89.2) (92.3, 88.5, 93.6)

MVTec3D (57.7, 88.4, 84.1) (83.4, 91.6, 95.1) (57.9, 88.4, 83.7) (81.4, 91.4, 93.7) (81.3, 90.8, 94.3) (76.4, 90.0, 91.8) (79.5, 91.1, 93.5) (84.5, 91.6, 95.3)
MPDD (61.1, 75.9, 66.9) (85.9, 88.5, 89.0) (79.8, 78.5, 75.7) (81.9, 82.8, 81.0) (84.0, 83.1, 86.1) (76.5, 80.7, 81.6) (88.0, 87.6, 92.6) (87.3, 87.8, 89.2)
BTAD (91.3, 91.2, 94.5) (93.5, 91.0, 95.9) (68.3, 79.1, 75.1) (94.4, 91.8, 96.2) (91.7, 84.3, 88.0) (86.1, 83.9, 88.4) (92.6, 91.0, 94.4) (96.5, 92.7, 97.2)

Average (73.1, 84.5, 82.2) (90.2, 90.8, 94.2) (73.7, 82.8, 79.5) (87.6, 88.8, 90.6) (87.6, 87.0, 90.7) (83.4, 85.9, 89.8) (88.7, 89.8, 93.4) (91.9, 91.8, 94.9)

Medical Datasets (AUROC, F1-Max, AP)

RESC (64.2, 63.7, 51.0) (88.5, 78.8, 85.4) (70.8, 65.6, 56.5) (87.5, 76.4, 84.6) (63.8, 62.6, 54.0) (78.3, 70.7, 71.2) (90.2, 81.0, 87.3) (91.2, 79.6, 90.6)
BrasTS (63.3, 83.9, 75.5) (79.4, 86.2, 87.8) (54.9, 82.6, 72.4) (78.6, 87.6, 86.4) (87.0, 88.0, 93.4) (88.0, 89.1, 93.5) (86.4, 88.2, 92.4) (88.4, 88.9, 94.3)
Average (63.7, 73.8, 63.2) (83.9, 82.5, 86.6) (62.9, 74.1, 64.4) (83.0, 82.0, 85.5) (75.4, 75.3, 73.7) (83.2, 79.9, 82.4) (88.3, 84.6, 89.8) (89.8, 84.3, 92.5)
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E.2. Detailed few-shot anomaly segmentation results

Table A.10. Performance comparison of anomaly segmentation with other SOTA methods under the 1-shot setting. The best results
are highlighted in red, and the second-best results are marked in blue. The symbol † denotes methods based on CLIP, and (a,b,c) represents
pixel-level (AUROC, PRO, AP). To ensure a fair comparison, all methods use the same normal reference images, and all CLIP-based
methods employ the same backbone (ViT-L-14-336) and input resolution (336× 336).

Datasets
RegAD [9]
(ECCV 22)

AnomalyGPT [7]
(AAAI 24)

FastRecon [5]
(ICCV 23)

† FastRecon+ [5]
(ICCV 23)

†WinCLIP [10]
(CVPR 23)

† APRIL-GAN [3]
(CVPR 23)

† PromptAD [13]
(CVPR 24)

† DictAS
(Ours)

Industrial Datasets (AUROC, PRO, AP)

MVTecAD (92.3, 76.8, 36.1) (95.3, 89.0, 48.8) (93.9, 82.6, 48.2) (95.1, 90.8, 50.5) (91.6, 82.0, 35.5) (91.2, 84.5, 43.8) (95.2, 90.9, 53.3) (97.7, 92.5, 61.1)
VisA (93.3, 68.7, 17.9) (87.4, 65.3, 16.8) (96.5, 81.6, 31.8) (96.1, 84.3, 26.0) (95.3, 85.2, 19.2) (95.9, 87.0, 29.3) (97.2, 88.4, 29.1) (98.0, 89.6, 32.7)

MVTec3D (95.4, 84.5, 8.4) (95.5, 84.3, 22.2) (95.4, 83.6, 15.9) (96.7, 89.3, 30.8) (96.2, 86.4, 22.8) (96.1, 88.4, 31.6) (97.0, 89.7, 29.9) (97.5, 92.1, 34.4)
MPDD (93.2, 74.6, 8.4) (96.6, 89.9, 31.3) (95.5, 84.1, 20.9) (96.2, 90.1, 30.7) (95.6, 86.7, 23.6) (94.9, 85.1, 28.3) (96.0, 90.4, 30.1) (97.4, 92.8, 33.3)
BTAD (95.6, 68.9, 33.1) (95.7, 71.7, 49.9) (95.9, 67.9, 42.8) (96.8, 80.6, 60.0) (88.9, 61.7, 26.0) (93.0, 73.4, 50.4) (96.1, 79.4, 61.3) (97.6, 82.1, 64.6)

Average (94.0, 74.7, 20.8) (94.1, 80.0, 33.8) (95.4, 80.0, 31.9) (96.2, 87.0, 39.6) (93.5, 80.4, 25.4) (94.2, 83.7, 36.7) (96.3, 87.8, 40.8) (97.6, 89.8, 45.2)

Medical Datasets (AUROC, PRO, AP)

RESC (84.6, 53.2, 14.6) (86.0, 58.5, 27.4) (93.0, 76.5, 31.7) (96.0, 83.6, 66.5) (92.3, 73.3, 33.4) (93.0, 74.9, 54.1) (96.4, 85.8, 68.2) (97.2, 88.8, 72.4)
BrasTS (91.3, 62.6, 17.5) (94.2, 69.9, 30.1) (93.4, 66.8, 25.8) (95.4, 71.4, 39.0) (93.1, 64.2, 33.2) (90.9, 62.7, 38.7) (95.9, 74.8, 46.0) (96.5, 74.5, 52.1)
Average (88.0, 57.9, 16.0) (90.1, 64.2, 28.8) (93.2, 71.6, 28.7) (95.7, 77.5, 52.8) (92.7, 68.7, 33.3) (92.0, 68.8, 46.4) (96.2, 80.3, 57.1) (96.9, 81.6, 62.3)

Table A.11. Performance comparison of anomaly segmentation with other SOTA methods under the 2-shot setting. The best results
are highlighted in red, and the second-best results are marked in blue. The symbol † denotes methods based on CLIP, and (a,b,c) represents
pixel-level (AUROC, PRO, AP). To ensure a fair comparison, all methods use the same normal reference images, and all CLIP-based
methods employ the same backbone (ViT-L-14-336) and input resolution (336× 336).

Datasets
RegAD [9]
(ECCV 22)

AnomalyGPT [7]
(AAAI 24)

FastRecon [5]
(ICCV 23)

† FastRecon+ [5]
(ICCV 23)

†WinCLIP [10]
(CVPR 23)

† APRIL-GAN [3]
(CVPR 23)

† PromptAD [13]
(CVPR 24)

† DictAS
(Ours)

Industrial Datasets (AUROC, PRO, AP)

MVTecAD (94.5, 82.7, 42.1) (95.9, 90.2, 50.7) (95.3, 85.8, 50.5) (95.5, 91.5, 51.9) (91.9, 82.7, 37.4) (91.6, 85.5, 45.1) (95.6, 91.5, 54.8) (98.2, 94.2, 63.9)
VisA (94.3, 70.2, 21.6) (87.7, 65.0, 19.7) (97.5, 83.9, 37.5) (96.6, 85.2, 30.6) (95.7, 85.9, 23.6) (96.1, 86.8, 30.1) (97.7, 89.4, 34.4) (98.5, 91.1, 39.0)

MVTec3D (95.9, 86.2, 10.0) (95.8, 85.5, 24.1) (95.8, 85.0, 16.9) (96.8, 90.4, 35.5) (96.4, 87.0, 23.5) (96.3, 88.8, 32.3) (97.2, 90.6, 33.1) (97.9, 93.4, 38.8)
MPDD (94.0, 79.3, 13.1) (97.3, 91.8, 34.5) (96.8, 89.1, 26.2) (96.8, 92.7, 35.7) (96.5, 89.4, 26.8) (95.1, 86.6, 30.2) (96.8, 92.6, 34.5) (97.9, 94.6, 38.0)
BTAD (96.9, 74.1, 42.3) (96.0, 72.4, 50.6) (96.4, 71.1, 45.1) (97.2, 80.5, 61.6) (89.6, 63.4, 27.5) (93.2, 73.2, 50.8) (96.4, 79.6, 62.3) (97.9, 82.4, 66.1)

Average (95.1, 78.5, 25.8) (94.5, 81.0, 35.9) (96.4, 83.0, 35.2) (96.6, 88.1, 43.1) (94.0, 81.7, 27.8) (94.5, 84.2, 37.7) (96.7, 88.7, 43.8) (98.1, 91.1, 49.2)

Medical Datasets (AUROC, PRO, AP)

RESC (85.9, 54.5, 15.1) (86.3, 59.0, 27.9) (93.5, 75.6, 32.9) (96.2, 84.7, 68.4) (92.7, 74.6, 35.7) (93.4, 76.5, 56.0) (96.7, 86.6, 69.9) (97.4, 89.6, 74.1)
BrasTS (92.7, 66.0, 20.6) (94.1, 70.2, 29.7) (93.4, 67.3, 25.6) (95.2, 71.7, 35.3) (93.0, 63.6, 32.9) (90.9, 63.1, 38.8) (95.8, 75.2, 45.7) (96.4, 73.8, 53.8)
Average (89.3, 60.3, 17.9) (90.2, 64.6, 28.8) (93.4, 71.4, 29.2) (95.7, 78.2, 51.9) (92.8, 69.1, 34.3) (92.2, 69.8, 47.4) (96.3, 80.9, 57.8) (96.9, 81.7, 62.0)

Table A.12. Performance comparison of anomaly segmentation with other SOTA methods under the 4-shot setting. The best results
are highlighted in red, and the second-best results are marked in blue. The symbol † denotes methods based on CLIP, and (a,b,c) represents
pixel-level (AUROC, PRO, AP). To ensure a fair comparison, all methods use the same normal reference images, and all CLIP-based
methods employ the same backbone (ViT-L-14-336) and input resolution (336× 336).

Datasets
RegAD [9]
(ECCV 22)

AnomalyGPT [7]
(AAAI 24)

FastRecon [5]
(ICCV 23)

† FastRecon+ [5]
(ICCV 23)

†WinCLIP [10]
(CVPR 23)

† APRIL-GAN [3]
(CVPR 23)

† PromptAD [13]
(CVPR 24)

† DictAS
(Ours)

Industrial Datasets (AUROC, PRO, AP)

MVTecAD [1] (95.7, 86.0, 46.5) (96.4, 91.2, 52.9) (95.9, 79.9, 47.0) (96.3, 92.2, 53.9) (92.4, 83.8, 39.2) (92.2, 86.6, 46.6) (96.0, 92.4, 57.5) (98.6, 95.1, 66.8)
VisA [21] (94.7, 72.8, 21.4) (96.5, 65.4, 20.8) (96.0, 77.7, 31.1) (97.0, 86.2, 32.5) (96.0, 86.5, 25.7) (96.2, 86.6, 30.6) (97.9, 89.5, 37.5) (98.8, 91.9, 41.8)

MVTec3D [2] (96.9, 89.2, 13.3) (96.6, 87.4, 27.8) (95.6, 83.6, 12.9) (97.1, 91.8, 39.2) (96.6, 87.9, 24.0) (96.4, 89.1, 33.1) (97.7, 92.1, 36.9) (98.4, 94.9, 44.2)
MPDD [11] (94.9, 83.3, 16.4) (97.7, 93.2, 40.8) (97.0, 87.5, 25.7) (97.4, 93.1, 37.8) (97.0, 90.7, 29.3) (95.3, 86.9, 31.4) (97.3, 94.0, 40.5) (98.4, 95.8, 42.9)
BTAD [15] (97.3, 75.5, 44.1) (96.2, 73.5, 50.6) (88.7, 62.1, 35.5) (97.4, 80.8, 62.2) (90.3, 64.7, 28.5) (93.3, 74.6, 50.9) (96.6, 80.1, 62.5) (98.0, 83.3, 66.8)

Average (95.9, 81.3, 28.3) (96.7, 82.1, 38.6) (94.6, 78.2, 30.4) (97.0, 88.8, 45.1) (94.5, 82.7, 29.3) (94.7, 84.8, 38.5) (97.1, 89.6, 47.0) (98.4, 92.2, 52.5)

Medical Datasets (AUROC, PRO, AP)

RESC [8] (87.9, 60.0, 18.1) (86.7, 60.0, 28.5) (91.7, 71.7, 30.3) (95.8, 82.8, 68.5) (93.1, 75.7, 38.4) (93.7, 77.6, 57.3) (96.8, 86.8, 71.3) (97.5, 89.7, 74.9)
BrasTS [14] (93.8, 70.2, 24.8) (95.4, 73.6, 41.8) (92.5, 63.8, 24.0) (96.1, 73.8, 43.9) (93.1, 64.0, 33.4) (91.3, 63.0, 40.0) (96.6, 77.0, 54.4) (97.3, 77.2, 59.3)

Average (90.8, 65.1, 21.5) (91.0, 66.8, 35.2) (92.1, 67.8, 27.1) (96.0, 78.3, 56.2) (93.1, 69.8, 35.9) (92.5, 70.3, 48.7) (96.7, 82.2, 62.9) (97.4, 83.4, 67.1)
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Table A.13. Anomaly segmentation performance of our DictAS on MVTecAD for each object category. Pixel-level AUROC, PRO and AP
are reported.

Object 1-shot 2-shot 4-shot

AUROC PRO AP AUROC PRO AP AUROC PRO AP

bottle 99.1±0.1 96.7±0.3 87.2±0.9 99.2±0.0 96.7±0.3 87.5±0.5 99.2±0.0 96.6±0.1 87.2±0.6
cable 97.8±0.3 90.1±0.6 66.7±2.5 98.7±0.4 93.7±1.1 76.5±4.2 98.9±0.3 94.8±0.9 78.7±2.1

capsule 97.7±0.2 93.1±0.9 37.3±9.4 98.5±0.3 95.6±1.2 43.0±9.2 98.6±0.3 95.6±0.8 45.0±4.4
carpet 99.7±0.0 98.4±0.1 85.1±0.3 99.7±0.0 98.5±0.1 85.1±0.3 99.7±0.0 98.4±0.0 85.4±0.3
grid 96.3±0.7 88.4±2.1 33.2±0.5 96.9±0.6 90.2±1.6 33.0±2.3 97.7±0.6 92.9±2.2 36.4±1.0

hazelnut 98.4±0.2 94.2±1.2 62.0±1.8 98.8±0.3 95.5±0.8 64.8±2.5 99.1±0.1 96.2±0.2 67.0±1.7
leather 99.6±0.0 98.8±0.1 57.9±0.4 99.6±0.0 98.8±0.1 57.5±0.5 99.6±0.0 98.7±0.1 58.5±1.0

metal nut 95.8±0.9 93.3±1.0 74.7±4.2 96.0±0.6 94.3±1.3 75.3±3.2 97.5±0.1 96.3±0.3 82.5±1.0
pill 98.5±0.1 97.8±0.1 77.4±0.8 98.7±0.1 97.9±0.1 80.1±0.9 98.9±0.1 98.0±0.1 81.8±0.9

screw 98.3±0.6 92.0±1.7 30.7±0.7 98.6±0.7 93.5±2.4 26.2±0.2 99.1±0.8 94.7±3.1 37.8±1.0
tile 98.5±0.1 95.8±0.3 82.1±1.2 98.6±0.1 96.1±0.2 83.0±0.6 98.8±0.0 96.3±0.2 85.0±0.1

toothbrush 97.3±0.8 85.4±3.1 40.2±6.0 99.0±0.6 91.2±2.5 52.7±4.3 99.2±0.4 91.4±4.2 56.7±4.5
transistor 93.3±2.1 75.9±4.1 56.1±5.7 95.7±1.2 82.8±3.5 63.5±4.4 96.5±0.7 87.2±1.9 66.1±3.0

wood 97.1±0.1 94.5±0.2 70.9±0.3 97.3±0.1 94.5±0.1 71.8±0.3 97.4±0.1 94.5±0.2 72.5±0.7
zipper 97.8±0.0 93.9±0.1 55.2±0.3 98.0±0.2 94.4±0.5 58.0±0.7 98.3±0.1 95.0±0.3 60.8±1.2

Average 97.7±0.1 92.5±0.3 61.1±0.5 98.2±0.1 94.2±0.2 63.9±1.2 98.6±0.0 95.1±0.3 66.8±0.4

Table A.14. Anomaly segmentation performance of our DictAS on VisA for each object category. Pixel-level AUROC, PRO and AP are
reported.

Object 1-shot 2-shot 4-shot

AUROC PRO AP AUROC PRO AP AUROC PRO AP

candle 99.3±0.1 96.3±0.1 23.6±0.9 99.4±0.1 96.4±0.1 23.7±0.5 99.5±0.0 96.7±0.1 24.5±0.6
capsules 97.8±0.2 84.6±2.3 37.0±1.2 98.4±0.2 86.0±1.4 39.7±1.1 98.7±0.1 87.6±2.1 40.0±0.7
cashew 99.4±0.1 96.1±0.6 60.3±2.8 99.5±0.1 96.2±0.4 66.4±2.8 99.5±0.0 95.7±0.3 67.5±2.1

chewinggum 99.6±0.0 93.0±0.4 78.1±0.5 99.6±0.0 91.8±0.6 78.8±0.5 99.6±0.0 92.4±0.3 78.1±0.3
fryum 97.5±0.2 89.5±0.5 41.5±1.1 97.8±0.2 90.1±0.8 42.9±1.4 97.9±0.1 90.8±0.8 44.0±0.3

macaroni1 99.2±0.2 96.5±1.7 10.4±0.7 99.5±0.1 97.5±0.5 12.1±0.7 99.6±0.0 97.6±0.2 15.1±0.4
macaroni2 96.7±0.6 86.7±1.8 2.7±1.3 96.6±0.5 87.5±0.4 5.4±0.8 97.5±0.3 91.0±1.2 7.1±0.8

pcb1 98.4±0.5 91.3±3.7 43.3±4.6 99.4±0.1 93.7±1.8 73.3±4.0 99.6±0.1 94.9±1.3 81.1±3.8
pcb2 96.2±0.3 76.0±3.4 12.6±3.7 97.2±0.2 81.8±2.6 19.1±2.7 97.5±0.2 80.1±1.7 20.5±1.9
pcb3 95.4±0.4 79.5±3.0 13.6±1.4 97.1±0.4 85.7±2.0 25.9±1.4 97.9±0.1 87.8±2.0 30.8±1.1
pcb4 97.5±0.4 89.0±2.5 18.4±3.7 98.1±0.2 89.8±0.6 29.9±6.3 98.6±0.3 91.8±1.0 40.6±8.8

pipe fryum 99.1±0.1 97.0±0.3 50.8±1.6 99.2±0.1 96.8±0.2 50.4±2.5 99.2±0.0 96.8±0.2 51.9±0.7

Average 98.0±0.1 89.6±0.7 32.7±0.9 98.5±0.1 91.1±0.4 39.0±2.0 98.8±0.1 91.9±0.3 41.8±1.7
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Table A.15. Anomaly segmentation performance of our DictAS on MVTec3D for each object category. Pixel-level AUROC, PRO and AP
are reported.

Object 1-shot 2-shot 4-shot

AUROC PRO AP AUROC PRO AP AUROC PRO AP

cookie 98.7±0.1 94.5±0.2 60.3±2.8 98.9±0.1 95.2±0.3 65.0±1.3 99.1±0.1 96.1±0.4 69.1±1.1
dowel 98.1±0.2 92.4±0.7 24.1±2.9 98.4±0.3 94.0±1.2 24.5±3.0 99.1±0.3 96.0±1.2 32.7±6.1

cable gland 96.1±0.7 88.1±1.7 11.8±2.2 97.2±0.5 91.6±1.5 16.4±5.3 99.1±0.6 97.4±1.5 32.6±3.7
rope 99.2±0.1 96.7±0.3 45.8±1.6 99.2±0.1 96.7±0.3 44.3±1.2 99.3±0.0 97.4±0.1 46.8±0.8

peach 98.5±0.5 94.5±1.8 26.6±15.5 99.1±0.5 96.6±1.8 39.5±16.6 99.6±0.0 98.5±0.2 56.0±1.7
potato 99.4±0.1 97.3±0.2 29.8±2.1 99.3±0.0 97.0±0.2 30.3±1.9 99.5±0.1 97.7±0.3 35.2±2.5
bagel 99.5±0.0 98.3±0.2 67.1±1.7 99.5±0.0 98.4±0.2 66.5±0.9 99.6±0.0 98.6±0.3 65.7±1.8
carrot 99.4±0.1 97.7±0.2 31.3±1.0 99.4±0.1 98.0±0.2 34.4±2.0 99.5±0.0 98.2±0.2 35.1±1.4
foam 88.6±1.0 69.6±2.1 30.9±0.6 88.8±0.4 70.8±1.1 31.0±0.3 90.0±0.2 72.1±0.6 30.9±0.1
tire 98.0±0.1 91.5±0.3 16.2±0.8 99.1±0.1 95.6±0.4 35.6±0.9 99.3±0.0 96.5±0.3 37.5±0.8

Average 97.5±0.1 92.1±0.1 34.4±1.5 97.9±0.1 93.4±0.3 38.8±1.7 98.4±0.1 94.9±0.2 44.2±1.1

Table A.16. Anomaly segmentation performance of our DictAS on MPDD for each object category. Pixel-level AUROC, PRO and AP are
reported.

Object 1-shot 2-shot 4-shot

AUROC PRO AP AUROC PRO AP AUROC PRO AP

bracket brown 94.8±0.4 90.7±0.7 5.3±0.3 95.7±0.3 92.9±1.3 7.1±0.7 96.5±0.3 94.3±1.1 9.7±0.9
connector 97.3±0.4 90.9±1.4 23.0±3.9 97.8±0.2 92.3±0.8 28.8±3.7 98.5±0.2 94.8±0.7 51.2±3.3

tubes 99.2±0.1 97.0±0.3 73.0±1.6 99.4±0.1 97.8±0.3 75.5±1.1 99.5±0.1 98.2±0.3 75.8±0.8
metal plate 98.3±0.0 95.0±0.1 89.8±0.1 99.0±0.0 96.4±0.1 93.3±0.2 99.2±0.1 96.8±0.2 94.4±0.4

bracket black 95.0±1.5 89.6±5.7 4.0±3.6 95.7±0.7 91.9±2.0 11.8±0.9 96.7±1.4 93.7±4.2 13.4±5.5
bracket white 99.4±0.1 93.4±3.1 4.8±0.6 99.8±0.1 96.3±1.9 11.8±0.4 99.8±0.2 97.0±0.6 12.7±2.5

Average 97.4±0.2 92.8±0.5 33.3±0.2 97.9±0.1 94.6±0.3 38.0±1.7 98.4±0.3 95.8±0.8 42.9±1.7

Table A.17. Anomaly segmentation performance of our DictAS on BTAD for each object category. Pixel-level AUROC, PRO and AP are
reported.

Object 1-shot 2-shot 4-shot

AUROC PRO AP AUROC PRO AP AUROC PRO AP

01 97.0±0.2 77.2±1.5 60.5±0.9 97.3±0.1 78.9±0.5 61.4±0.5 97.5±0.1 80.6±0.6 61.8±0.4
02 97.0±0.0 73.1±1.5 74.2±0.4 97.1±0.1 71.5±1.3 74.5±0.8 97.2±0.0 72.2±0.6 74.4±0.3
03 99.0±0.1 96.0±0.1 59.1±1.4 99.1±0.1 96.6±0.3 62.5±1.6 99.3±0.0 97.2±0.1 64.1±1.8

Average 97.6±0.1 82.1±0.6 64.6±0.7 97.9±0.1 82.4±0.3 66.1±0.8 98.0±0.0 83.3±0.4 66.8±0.7
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F. Detailed Qualitative Results

Figure A.4. Visualization of segmentation results for the bottle class on MVTecAD under the 4-shot setting. The first row displays the
input images, with green outlines indicating the ground truth regions. The second row presents the anomaly segmentation results.

Figure A.5. Visualization of segmentation results for the cable class on MVTecAD under the 4-shot setting. The first row displays the
input images, with green outlines indicating the ground truth regions. The second row presents the anomaly segmentation results.

Figure A.6. Visualization of segmentation results for the carpet class on MVTecAD under the 4-shot setting. The first row displays the
input images, with green outlines indicating the ground truth regions. The second row presents the anomaly segmentation results.

Figure A.7. Visualization of segmentation results for the grid class on MVTecAD under the 4-shot setting. The first row displays the input
images, with green outlines indicating the ground truth regions. The second row presents the anomaly segmentation results.
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Figure A.8. Visualization of segmentation results for the hazelnut class on MVTecAD under the 4-shot setting. The first row displays the
input images, with green outlines indicating the ground truth regions. The second row presents the anomaly segmentation results.

Figure A.9. Visualization of segmentation results for the pill class on MVTecAD under the 4-shot setting. The first row displays the input
images, with green outlines indicating the ground truth regions. The second row presents the anomaly segmentation results.

Figure A.10. Visualization of segmentation results for the tile class on MVTecAD under the 4-shot setting. The first row displays the input
images, with green outlines indicating the ground truth regions. The second row presents the anomaly segmentation results.

Figure A.11. Visualization of segmentation results for the metal nut class on MVTecAD under the 4-shot setting. The first row displays
the input images, with green outlines indicating the ground truth regions. The second row presents the anomaly segmentation results.
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Figure A.12. Visualization of segmentation results for the wood class on MVTecAD under the 4-shot setting. The first row displays the
input images, with green outlines indicating the ground truth regions. The second row presents the anomaly segmentation results.

Figure A.13. Visualization of segmentation results for the screw class on MVTecAD under the 4-shot setting. The first row displays the
input images, with green outlines indicating the ground truth regions. The second row presents the anomaly segmentation results.

Figure A.14. Visualization of segmentation results for the toothbrush class on MVTecAD under the 4-shot setting. The first row displays
the input images, with green outlines indicating the ground truth regions. The second row presents the anomaly segmentation results.

 

Figure A.15. Visualization of segmentation results for the candle class on VisA under the 4-shot setting. The first row displays the input
images, with green outlines indicating the ground truth regions. The second row presents the anomaly segmentation results.
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Figure A.16. Visualization of segmentation results for the cashew class on VisA under the 4-shot setting. The first row displays the input
images, with green outlines indicating the ground truth regions. The second row presents the anomaly segmentation results.

 

Figure A.17. Visualization of segmentation results for the fryum class on VisA under the 4-shot setting. The first row displays the input
images, with green outlines indicating the ground truth regions. The second row presents the anomaly segmentation results.

 

Figure A.18. Visualization of segmentation results for the pipe fryum class on VisA under the 4-shot setting. The first row displays the
input images, with green outlines indicating the ground truth regions. The second row presents the anomaly segmentation results.

 

Figure A.19. Visualization of segmentation results for the PCB1 class on VisA under the 4-shot setting. The first row displays the input
images, with green outlines indicating the ground truth regions. The second row presents the anomaly segmentation results.

 

Figure A.20. Visualization of segmentation results for the PCB4 class on VisA under the 4-shot setting. The first row displays the input
images, with green outlines indicating the ground truth regions. The second row presents the anomaly segmentation results.
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Figure A.21. Visualization of segmentation results on BTAD under the 4-shot setting. The first row displays the input images, with green
outlines indicating the ground truth regions. The second row presents the anomaly segmentation results..

 

Figure A.22. Visualization of segmentation results for the metal plate class on MPDD under the 4-shot setting. The first row displays the
input images, with green outlines indicating the ground truth regions. The second row presents the anomaly segmentation results.

 

Figure A.23. Visualization of segmentation results for the tubes class on MPDD under the 4-shot setting. The first row displays the input
images, with green outlines indicating the ground truth regions. The second row presents the anomaly segmentation results.

 

Figure A.24. Visualization of segmentation results for the bangel class on MVTec3D under the 4-shot setting. The first row displays the
input images, with green outlines indicating the ground truth regions. The second row presents the anomaly segmentation results.
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Figure A.25. Visualization of segmentation results for the cable gland class on MVTec3D under the 4-shot setting. The first row displays
the input images, with green outlines indicating the ground truth regions. The second row presents the anomaly segmentation results.

 

Figure A.26. Visualization of segmentation results for the carrot class on MVTec3D under the 4-shot setting. The first row displays the
input images, with green outlines indicating the ground truth regions. The second row presents the anomaly segmentation results.

 

Figure A.27. Visualization of segmentation results for the foam class on MVTec3D under the 4-shot setting. The first row displays the
input images, with green outlines indicating the ground truth regions. The second row presents the anomaly segmentation results.

 

Figure A.28. Visualization of segmentation results for the rope class on MVTec3D under the 4-shot setting. The first row displays the
input images, with green outlines indicating the ground truth regions. The second row presents the anomaly segmentation results.
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Figure A.29. Visualization of segmentation results for the brain class on RESC under the 4-shot setting. The first row displays the input
images, with green outlines indicating the ground truth regions. The second row presents the anomaly segmentation results.

Figure A.30. Visualization of segmentation results for the retina class on BrasTS under the 4-shot setting. The first row displays the input
images, with green outlines indicating the ground truth regions. The second row presents the anomaly segmentation results.
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