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7. Limitations and Forecast

Our work highlights the necessity of creating high-NSD
(Necessary Sampling Density) tasks on long videos, which
require dense and high-quality human annotations. How-
ever, due to the current limitations in community resources
and the high cost of annotations, large-scale densely an-
notated datasets for long videos remain scarce. In this
work, we chose EGO4D as the foundation for generating
our dataset because it provides high-quality annotations that
align with our standards. Nevertheless, this choice imposes
certain constraints on the diversity of task types and sce-
narios. We hope that more high-quality annotated datasets
for long videos will emerge in the future. Additionally, our
proposed pipeline for generating high-NSD tasks on long
videos is highly adaptable to new annotated datasets and
can be extended, with slight modifications, to audio-visual
data.

Regarding our Reasoning-Driven Hierarchical Sampling
approach, its current design is limited by the reasoning
capabilities of existing vision-language models (VLMs)
and our computational resources. We implemented a rel-
atively straightforward 2-stage framework, which has al-
ready achieved impressive results. However, with ad-
vancements in reasoning capabilities and models’ capac-
ity for sustained ”long thinking,” there is potential to in-
tegrate sampling as an adaptive tool. This could enable dy-
namic, on-demand visual cue searches during reasoning in
an end-to-end manner, further enhancing the framework’s
efficiency and flexibility.

Finally, our SGFS (Sparse-Guided Frame Selection) cur-
rently employs a vision encoder similar to CLIP, which does
not explicitly account for temporal information. This limi-
tation leads to the loss of motion-related cues, particularly
in short-term temporal sequences where adjacent frames ex-
hibit high similarity. Consequently, we restricted its use to
sparse sampling scenarios. We are optimistic that future
research will introduce zero-shot encoders specifically de-
signed to encode temporal information, enabling improve-
ments in this area.

8. Discussion on speed

We conducted experiments using Qwen2.5-VL-7B on LSD-
Bench using single GPU. Ours achieved result comparable
to base model with 768 frames, while requiring significantly
less inference time.

Method Qwen2.5-VL Qwen2.5-VL Ours

Avg. Frames 256 768 225
Acc(%) 50.1 52.5 52.2

Avg. Time 22.4s 40.3s 27.5s

9. Discussion on question-prior

We deliberately choose not to incorporate question prior
in SGFS because methods relying on semantic similarity
can only select frames that are directly similar to the ques-
tion. Such approaches may fail in more complex scenar-
ios involving indirect references or temporal reasoning. For
instance, when faced with “What did this person do af-
ter washing the dishes?”, key information after “washing
dishes” will be filtered out. This limitation underscores the
necessity of leveraging reasoning-capable VLMs in stage 1.

We also conducted corresponding experiments. (i) We
completely replaced SGFS with selecting frames solely
based on their semantic similarity to the question, maintain-
ing the same number of initial sampling frames. The results
showed a significant drop in accuracy. (ii) We attempted
to incorporate question similarity into SGFS. Specifically:
Wij = Sij + Pij + γ ∗ sim(question, initial framej). We
present the best result obtained through simple enumeration
of γ. The improvement in accuracy is still minor. However,
it is important to note that despite the minor improvements,
existing text encoders have limited input sequence length
(e.g., CLIP’s 77-token, SIGLIP2’s 64-token), which hinder
the processing of longer questions. And in multi-turn di-
alogue scenarios, frames would need to be repeatedly re-
selected, significantly increasing computational overhead.

Method SGFS Only Question-Prior SGFS + Question-Prior

Acc(%) 52.2 49.6 52.8

In summary, we conclude that incorporating a question
prior into SGFS has considerable limitations.

10. Robustness to noise

To simulate noise, we introduced perturbations, including
random resizing and randomly replacing sampled frames
with 0.5s-neighboring frame. We conducted 5 random runs
for RHS, obtaining average accuracy of 52.84, and a vari-
ance of 0.6. This result demonstrate the robustness of our
method against noise.



11. Additional Experiment Results
We present in Table 4 the accuracy of the model on LS-
DBench when the full video is used as input under vary-
ing numbers of sampled frames. Additionally, in Table 3,
we provide the accuracy performance when using SGFS
and RHS under different initial sampling frame counts and
SGFS target frame settings.

Initial Sampling Acc (%)

1-FPM 51.0

1-FPM → 0.50-FPM 50.1
2-FPM → 0.25-FPM 48.7
2-FPM → 0.50-FPM 50.1
2-FPM → 1.00-FPM 51.5
4-FPM → 0.50-FPM 51.8
4-FPM → 1.00-FPM 52.2

Table 3. Ablation study on different setting (including number of
initial sampling frames and the ratio of kept frames) of the sam-
pling module.

12. Exploration of SGFS hyperparameters
We conducted ablation study, as shown in the table be-
low. Properly setting hyperparameters within an appropri-
ate range can improve performance.

λ 1 2 10 40 160 640 10 10 10 10 10 10
β 0.3 0.3 0.3 0.3 0.3 0.3 0.05 0.1 0.3 0.5 0.7 0.9

Acc(%) 49.9 50.3 52.2 52.2 52.0 51.7 51.9 51.5 52.2 51.2 49.9 50.9

13. Visualizations of SGFS
We visualized the sampling results of SGFS and compared
the sampled frames obtained through uniform sampling,
SGFS, and SGFS without the length penalty under the con-
dition of retaining the same target number of frames. From
the results, we observed that the frames sampled by SGFS
contain significantly less redundancy, enabling more di-
verse and informative visual content with the same number
of frames.

Model Sampling Frames Accuracy

Gemini-2.0-Flash 1-FPS 2700 56.2
Gemini-2.0-Flash Oracle 1-FPS 180 64.8
Gemini-2.0-Flash Text 0 29.1

LongVA Fixed 2 31.4
LongVA Fixed 4 32.4
LongVA Fixed 8 31.7
LongVA Fixed 16 32.6
LongVA Fixed 32 30.9
LongVA Fixed 64 30.4
LongVA Fixed 128 31.5
LongVA Fixed 256 31.3
LongVA Fixed 512 33.0
LongVA Fixed 1024 32.5

Qwen2-VL text 0 30.5
Qwen2-VL Fixed 2 40.4
Qwen2-VL Fixed 4 42.6
Qwen2-VL Fixed 8 42.9
Qwen2-VL Fixed 16 44.9
Qwen2-VL Fixed 32 45.5
Qwen2-VL Fixed 64 47.7
Qwen2-VL Fixed 128 49.1
Qwen2-VL Fixed 256 48.0
Qwen2-VL Fixed 768 45.4

LongVila Text 0 36.9
LongVila Fixed 2 36.6
LongVila Fixed 4 39.6
LongVila Fixed 8 43.0
LongVila Fixed 16 43.8
LongVila Fixed 32 45.4
LongVila Fixed 64 46.9
LongVila Fixed 128 48.3
LongVila Fixed 256 49.8

Qwen2.5-VL Only-Text 0 30.2
Qwen2.5-VL Fixed 2 41.2
Qwen2.5-VL Fixed 4 42.7
Qwen2.5-VL Fixed 8 44.2
Qwen2.5-VL Fixed 16 45.6
Qwen2.5-VL Fixed 32 45.2
Qwen2.5-VL Fixed 64 48.3
Qwen2.5-VL Fixed 128 51.0
Qwen2.5-VL Fixed 256 50.1
Qwen2.5-VL Fixed 768 52.5
Qwen2.5-VL 2-Stage 45+180 52.2

InternVideo2.5 Text 0 36.1
InternVideo2.5 Text 4 43.3
InternVideo2.5 Fixed 4 43.3
InternVideo2.5 Fixed 8 46.9
InternVideo2.5 Fixed 16 47.2
InternVideo2.5 Fixed 32 49.3
InternVideo2.5 Fixed 64 49.2
InternVideo2.5 Fixed 128 50.1
InternVideo2.5 Fixed 256 50.1

Table 4. Performance comparison of different models and sam-
pling settings.
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Figure 7. Sampled frames thumbnails and timeline distribution. The frames in each box are considered having similar semantic information,
which shows redundancy.
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Figure 8. Sampled frames thumbnails and timeline distribution. The frames in each box are considered having similar semantic information,
which shows redundancy.
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Figure 9. Sampled frames thumbnails and timeline distribution. The frames in each box are considered having similar semantic information,
which shows redundancy.


