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A. Gradients of the regularizer

Herein, we provide further details on the regularizer,
namely, by deriving its gradients.

Namely, ∀k0 ∈ JKK,
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Computing the Wasserstein distance requires a sorting
oracle, even in one dimension. In practice, backpropagation
works through subgradients of the sorting operation. While
argsort is non-differentiable, by leveraging automatic dif-
ferentiation with PyTorch, in the POT library [16] gradients
flow through the take along axis operation, treating sorting
indices as constants during backpropagation. This is suffi-
cient because the Wasserstein distance remains well-defined
even at points where the sorting order changes.

B. Correlation between Wasserstein distance
and performance degradation

In Tab. 2, we analyze the correlation between the Wasser-
stein distance for each considered block (B1, B2, B3, B4),
and performance degradation for a ResNet-18 on CIFAR-
10. The higher λ, the lower the distances, thus the more
likely the block has a function close to the identity, and
therefore the higher the performance since removing a
block close to identity does not lead to any changes. Indeed,
if the Wasserstein distance is zero, by definition the output
matches the input and therefore the whole block encodes the
identity function. The higher the distance is, the larger the
perturbation introduced will be, increasing the risk of per-
formance loss. Consequently, as λ increases, performance
improves since removing a block functioning close to iden-
tity has minimal impact on the model’s behavior.

λ B1 B2 B3 B4 Mean top-1

0.01 0.210 0.126 0.104 0.044 0.121 73.04
0.1 0.068 0.074 0.036 0.016 0.048 80.23
1 4.63e-4 0.0246 5.80e-3 2.59e-4 7.78e-3 89.01
5 4.41e-4 7.93e-3 4.35e-4 1.34e-4 2.23e-3 90.99

Table 2. Correlation between the Wasserstein distance of each
block (B1, B2, B3, B4) and the performance for a ResNet-18 on
CIFAR-10.

C. Relationship between critical path length
and practical resource consumption

In this section, we show that optimizing the critical path
length can lead to significant improvements in both infer-
ence speed and computational efficiency. Indeed, Fig. 5
demonstrates the relationship between critical path length,
inference time (measured on a NVIDIA A4500) and com-
putational complexity (MACs) for a ResNet-18 on CIFAR-
10.
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Figure 5. Relationship between Critical Path Length (CPL), in-
ference time, and Multiply-Accumulate Operations (MACs) for a
ResNet-18 model on the CIFAR-10 dataset. As the CPL decreases,
both the inference time and the number of MACs decrease, indicat-
ing improved computational efficiency and faster inference speeds.

This analysis highlights a trade-off between computa-
tional complexity and inference speed. Reducing the criti-
cal path length leads to both faster inference times and fewer
computational operations: shorter critical paths are more ef-
ficient in terms of both time and computational resources.



D. Practical Benefits
Following the analysis conducted in Sec. 5.3, in this sub-
section, we showcase the practical benefits of our approach
in terms of efficiency as well as inference time.

To clarify the role of block eligibility in our method,
Tab. 3 reports, for each tested backbone: the total number
of blocks (# Blocks), the number of blocks satisfying the
equal-shape criterion and thus eligible for MSW scoring (#
MSW), the number of blocks ultimately pruned (# Pruned),
along with the resulting percentage reductions in latency
and MACs, and the resulting Top-1 accuracy on CIFAR-10.
Tab. 3 provides a detailed quantification of block eligibility
and its impact on both efficiency and performance. For the
cases where this assumption does not hold, we describe a
workaround in Sec. E.

Backbone # Blocks # MSW # Pruned Latency MACs Top-1

ResNet-18 8 4 4 -39.50 % -53.86 % 90.99

Swin-T 12 12 3 -38.48 % -61.55 % 89.47

MobileNetv2 17 12 10 -23.66 % -3.81 % 87.25

Table 3. Block eligibility and impact of pruning on CIFAR-10.

Tab.4 shows the test performance, MACs, and inference
time on an NVIDIA A4500, as well as the training time for
a MobileNetv2 trained on CIFAR-10 for all the considered
approaches.

Approach top-1 [%] MACs [M] Inference time [ms] Time
Original 93.50 87.98 13.57 ± 0.82 112’

Layer Folding 86.56 87.98 20.29 ± 0.19 529’
EGP 9.70 87.98 13.38 ± 0.18 732’

NEPENTHE 86.75 87.98 13.29 ± 0.24 3165’
EASIER 87.19 87.98 13.22 ± 0.54 3514’

LaCoOT 87.25 84.63 10.36 ± 0.60 132’

Table 4. Test performance (top-1), MACs, inference time on a
NVIDIA A4500 and training time for MobileNetv2 trained on
CIFAR-10. Original refers to the trained model without layer dele-
tion. The best results between Layer Folding, EGP, NEPENTHE,
EASIER and LaCoOT are in bold.

In this setup, while Layer Folding and EGP showcase
performance drop at high critical path length, we achieve
comparable performance as EASIER or NEPENTHE for
the same critical path length in 20× less time, with real
practical benefits since the inference time and the MACs
are reduced.

Tab. 5 shows the test performance, MACs, and inference
time on an NVIDIA A4500, as well as the training time
for a Swin-T trained on CIFAR-10 for all the considered
approaches. In this setup, since the fusion of two linear
layers is straightforward, we merge the layers for the base-
line methods when the non-linearity in between has been
removed.

Approach top-1 [%] MACs [M] Inference time [ms] Time
Original 91.67 518.94 13.54 ± 0.32 113’

Layer Folding 85.73 510.80 14.89 ± 0.11 383’
EGP 92.01 514.95 13.51 ± 0.17 228’

NEPENTHE 92.29 510.82 13.24 ± 0.26 688’
EASIER 91.25 494.28 11.04 ± 0.15 803’

LaCoOT 89.47 199.54 8.33 ± 0.02 135’

Table 5. Test performance (top-1), MACs, inference time on a
NVIDIA A4500 and training time for Swin-T trained on CIFAR-
10. Original refers to the trained model without layer deletion. The
best results between Layer Folding, EGP, NEPENTHE, EASIER
and LaCoOT are in bold.

In this setup, we can observe that the other methods
reduce the number of MACs. However, there is little
(if any) benefit in practice: the inference time is not re-
duced. Indeed, these methods focus solely on removing
non-linearities, unlike our method, which removes com-
plete blocks. On the other hand, although a slight loss of
performance is noticeable, our method LaCoOT consider-
ably reduces the number of MACs and decreases the infer-
ence time by more than 35%, while being far more efficient
at training time than its competitors.

E. Extension of LaCoOT to layers with mis-
matched dimensionalities

LaCoOT was primilary designed to operate on layers where
the Max-Sliced Wasserstein distance can be computed di-
rectly. This distance requires matching dimensions between
distributions, which prevents a direct calculation of this dis-
tance for layers with different input and output dimensions.
Nevertheless, we propose in this section to address this is-
sue by studying the case of a 3x3 convolutional layer inside
a ResNet-18.

Our goal here is to remove this specific layer in the net-
work. However, directly removing the layer would result in
a mismatch in both spatial resolution and channel dimen-
sionality, disrupting the flow of activations through the net-
work. To mitigate this, we introduce an alternative trans-
formation that preserves the overall network structure while
ensuring compatibility with subsequent layers. Specifically,
we replace the 3×3 convolutional layer with a combina-
tion of a spatial downsampling operation and a 1×1 con-
volution. The downsampling is achieved using an average
pooling layer (AvgPool2d) with a 2×2 kernel and a stride
of 2, which reduces the spatial resolution. The 1×1 convo-
lution then adjusts the number of output channels to match
the expected input dimensions of the following layers. To
ensure both configurations could be trained simultaneously,
we implemented a dual-path approach within the modified
block, where both the original and new transformations co-
existed. During training, the introduced path with the 1x1



convolution is only trained using the Max-Sliced Wasser-
stein distance, computed between the output distribution of
the 1x1 convolution and the output distribution of the orig-
inal 3x3 convolution. Post-training, the original 3x3 convo-
lution is discarded, and replaced by the average pooling and
the newly trained 1x1 convolution.

Following the same training policy detailed in Sec. L, a
ResNet-18 with the introduced transformation is trained on
CIFAR-10. On the one hand, with λ = 0, the resulting net-
work with the proposed transformation loses 0.98% perfor-
mance compared to its full version. On the other hand, with
λ = 0.1, the resulting network achieves comparable perfor-
mance with only a 0.18% performance loss compared to its
full version, highlighting the effectiveness of our method in
this case.

To conclude, by incorporating this modified structure
into the ResNet-18 architecture, we enable a seamless inte-
gration of LaCoOT which addresses the case of layers with
mismatched dimensions.

F. Additional Results on Image Classification
Setups

To complete the comparisons carried out in Sec. 5, we
compare in this section the effectiveness of LaCoOT with
respect to other baselines methods on Swin-T trained on
PACS, VLCS, Aircraft, Flowers-102 and DTD in Fig 6.
Indeed, as demonstrated in the previous section (Sec. D),
Swin-T is the only architecture where competing methods
can lead to practical benefits, since the fusion of two con-
secutive linear layers is straightforward.

In most setups, we can observe the effectiveness of La-
CoOT. Indeed, for short critical path length, LaCoOT is the
method performing overall the best, achieving a new Pareto
Frontier when λ is increasing. In some cases like DTD, La-
CoOT outperforms current methods by 10% for the same
critical path length. Additionally, looking at longer critical
path lengths, we can observe that when λ is decreasing, La-
CoOT achieves comparable results to other baseline meth-
ods. Overall, since our method focuses on removing blocks,
shorter critical path lengths can be achieved even though the
performance drops dramatically. For very short critical path
length (around 60), applying a healing policy or finetuning
to the model could help recovering performance. However,
we leave this aspect to future work.

G. Ranking with the Lipschitz constant
While Fig. 2 and 3 emphasize critical path length, we
also report results using standard metrics (MACs, inference
time, and training time) in Tab. 1, 4 and 5, which confirm
the advantage of LaCoOT across multiple resource and per-
formance dimensions. Furthermore, we show here in Tab. 6
that the ranking of the methods is preserved by display-

ing the Lipschitz constants across all blocks (B1–B4) of
ResNet-18 on CIFAR-10. The global Lipschitz constant
is upper bounded by the product of each block’s Lipschitz
constant.

Approach B1 B2 B3 B4 Global

Original 3.61 3.42 2.12 1.47 38.48

Layer Folding 1.01 7.52 5.19 1.01 39.81

EGP 3.83 3.70 1.01 1.01 14.17

NEPENTHE 4.53 3.03 1.01 1.01 13.73

EASIER 4.72 1.44 1.35 2.69 24.68

LaCoOT (λ = 5) 1.01 1.04 1.10 1.18 1.36

Table 6. Lipschitz constants for ResNet-18 on CIFAR-10.

H. Comparison with structured pruning
To complete the comparisons carried out in Sec. 5, we com-
pare in this section the effectiveness of LaCoOT with re-
spect to a traditional model pruning method : Depgraph [15]
in Tab. 7. LaCoOT outperforms DepGraph and achieves
superior latency reduction. DepGraph’s low performance
is due to the absence of retraining after pruning (to fairly
compare to us). Furthermore, since [13, 15, 37] perform
channel pruning while LaCoOT removes entire layers, these
methods operate at different levels of granularity. Rather
than addressing the exact same problem, they are comple-
mentary: applying DepGraph on top of LaCoOT (as a re-
finement at finer granularity) yields even greater latency
gains.

Approach top-1 [%] MACs [M] Latency

Original 91.77 140.19 100%

LaCoOT (λ = 5) 90.99 64.69 -38%
Depgraph (0.3) 59.40 70.96 -11%

LaCoOT (λ = 5) + Depgraph (0.2) 90.96 57.22 -45%
LaCoOT (λ = 5) + Depgraph (0.3) 89.27 49.63 -49%

Table 7. Depgraph vs. LaCoOT for ResNet-18 on CIFAR-10.

I. A closer look at generated samples
We display in Fig. 7 some generated samples from the
pre-trained DiT-XL/2 (Fig. 7a), a DiT-XL/2 with two DiT
blocks removed without the use of LaCoOT (Fig. 7b), and
from a DiT-XL/2 finetuned with LaCoOT(λ = 1e−4) with
two DiT blocks removed (Fig. 7c).

While the removal of blocks is completely destroying
generated images in absence of the regularization, the gen-
erated content is better preserved when the DiT-XL/2 is
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Figure 6. Test performance (Top-1 [%]) in function of the Critical Path Length for Swin-T trained on Aircraft (a), DTD (b), Flowers-102
(c), PACS (d) and VLCS (e). For each setup, we showcase the results achieved by LaCoOT for different values of λ, forming in dark blue
the pareto frontier of our technique. Top left corner is the best.

fine-tuned with our method on 5k training steps. Indeed,
the resulting images are much better than the the generated
images produced without LaCoOT. However, we can ob-
serve a little loss in visual fidelity with respect to the pre-
trained DiT-XL/2. For instance, although we can still per-
ceive the buildings in the third image of the second column
in Fig. 7c, we can no longer discern the lake in the fore-
ground compared to the pre-trained model image in Fig. 7a.
Nevertheless as it required only a few finetuning steps and
given the quality of the generated samples with our method
compared to without, we believe that our approach LaCoOT
can be applied and suitable for foundation models.

J. Ablation Study

In this section, we conduct multiple ablation studies. First,
we explore in Sec. J.1 the impact of using the Max-Sliced
Wasserstein Distance, or the the Sliced Wasserstein Dis-
tance as a regularization in our method. Second, we evalu-
ate the impact of the number of projections in Sec. J.2 and
the batch size in Sec. J.3 toward LaCoOT success. Finally,
in Sec. J.4, we compare our method LaCoOT replacing the
Max-Sliced Wasserstein Distance with other existing met-
rics to quantify differences between distributions.

J.1. Theoretical guarantees versus practical benefits

From the POT library [16], two sliced OT distances can be
used in our proposed regularization strategy. We propose

here to explore the impact of using the Max-Sliced Wasser-
stein Distance (MSWD), or the the Sliced Wasserstein Dis-
tance (SWD) as a regularization in our method.

From a theoretical perspective, it is preferable to use
the MSWD as it guarantees convergence [12]. Indeed, the
MSWD minimizes the worst-case difference in distribution
between the two measures over all possible projections.
Since the MSWD is a global measure over all slices, it en-
forces convergence in the full measure space. This makes
it a robust and convergent method for comparing distribu-
tions, ensuring that all possible distances are minimized
when the maximum distance is minimized.

Moreover, when performing projections to calculate the
Wasserstein Distance, we evaluate the impact of seeding the
generator. Specifically, we investigate whether initializing
the random seed for the generator during the projection pro-
cess affects the stability or performance of our model.

This leads to four distinct configurations:
• “Seed + SWD” refers to the case where the SWD is used

as a regularizer in our framework, and the generator is
seeded during projections;

• “Seed + MSWD” refers to the case where the MSWD is
used as a regularizer in our framework, and the generator
is seeded during projections;

• “None + SWD” refers to the case where the SWD is used
as a regularizer in our framework, and the generator is
not seeded during projections, allowing for randomness
to influence the projection directions;



(a) Samples generated from a pre-trained DiT-XL/2.

(b) Samples generated from a DiT-XL/2 with two DiT blocks removed, without LaCoOT. The generated content tends to be indiscernible.

(c) Samples generated from a DiT-XL/2 finetuned with LaCoOT (λ = 1e−4) with two DiT blocks removed.

Figure 7. Generated samples from different configurations of a DiT-XL/2. When finetuned with LaCoOT, when two DiT blocks are
removed, the generated content is better preserved. Indeed, the removal of blocks is completely destroying generated images in absence of
the regularization, while the generated content is better preserved with its use.
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Figure 8. MSWD vs. SWD and impact of seeding the generator
for the projections for a ResNet-18 trained on CIFAR-10 with La-
CoOT (λ = 5). SWD yields better results than MSWD.

• “None + MSWD” refers to the case where the MSWD is
used as a regularizer in our framework, and the generator
is not seeded during projections, allowing for randomness
to influence the projection directions.
Since the unseeded approach may expose the model to

more generalization across different slices, and that MSWD
provides theoretical convergence guarantees, we use the
“None + MSWD” configuration in all our experiments ex-
cept where otherwise stated.

Fig. 8 displays the results of the ablation over the 4 con-
figurations on a ResNet-18 trained on CIFAR-10 with our
method LaCoOT with λ = 5. Since variability between
runs can occur, we report standard deviations over 5 runs.

Interestingly, despite offering theoretical convergence
guarantees, the use of MSWD as a regularizer yields worse
results compared to the use of the SWD. Moreover, looking
at the standard deviations, we can observe that the “None
+ SWD” configuration display the lowest, which shows its
stability. Thus, we draw the reader’s attention to the fact
that better results can be obtained in practice if one allow
himself to dispense with the theoretical convergence guar-
antees.

J.2. Ablation on the number of projections
In this subsection, we evaluate the impact of the number of
projections nproj toward LaCoOT success. Indeed, Fig. 9
shows the results achieved for LaCoOT(λ = 5) when lower-
ing the number of projections used to calculate the MSWD.

While for the extreme case (nproj = 1), a drop in perfor-
mance is observed when blocks are removed and MACs re-
duced, we can already obtain decent results with nproj = 5.
Indeed, it appears that the number of projections plays a
role in the trade-off between the model’s original perfor-
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Figure 9. Ablation on the number of projection nproj for a
ResNet-18 trained on CIFAR-10 with LaCoOT (λ = 5).

mance (at 140.19 MACs) and the possibility of removing
layers without performance loss. In fact, nproj = 40 show-
cases the best results with the best performance at lower
MACs, and a very slight loss of performance with respect
to its original counterpart at 140,19 MACs.

J.3. Ablation on the batch size
In this subsection, we evaluate the impact of the batch size
BS on LaCoOT results. Indeed, Fig. 10 shows the results
achieved for LaCoOT(λ = 5) when lowering the batch size
used to calculate the MSWD.
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Figure 10. Ablation on the batch size BS for a ResNet-18 trained
on CIFAR-10 with LaCoOT (λ = 5).

Looking at the results, it appears evident that reducing
the batch size produces worse results. Although perfor-
mance remains constant (or presents a slight decrease for
BS = 100) when layers are removed and MACs are re-



duced, it appears evident that the smaller the batch size,
the lower the performance of the original model (at 140.19
MACs). Hence, whenever possible, LaCoOT should always
be applied with a sufficiently large batch size that can fit in
the memory of the used computing resources.

J.4. Comparison with other metrics

In this subsection, we compare our method LaCoOT us-
ing other existing metrics to quantify differences between
distributions. Indeed, the MSWD regularization can be re-
placed by the ℓ1 distance, the ℓ2 distance, the Maximum
Mean Discrepancy (MMD) or the Kullback-Leibler (KL)
Divergence. For each comparison, we show the best con-
figuration of λ yielding the best results for the trade-off be-
tween top-1 performance and MACs. Indeed, a grid search
on λ is carried out to find the best trade-offs. Fig. 11 dis-
plays the results for a ResNet-18 trained on CIFAR-10.
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Figure 11. Ablation on LaCoOT replacing the proposed regu-
larization with ℓ1, ℓ2, MMD or KL divergence, for a ResNet-18
trained on CIFAR-10.

On the one hand, while for high MACs, the KL diver-
gence shows its competitiveness, the performance drops
dramatically as blocks are removed and MACs reduced.
On the other hand, we can observe that ℓ1, ℓ2 and MMD
obtain similar performance/complexity trade-off with rela-
tively few performance drops. Our method LaCoOT with
the MSWD outperforms the other compared metrics for
lower MACs.

While the choice of metric seems to have very little im-
pact on the performance obtained, we draw the reader’s at-
tention to the fact that this is due to the idea we are propos-
ing. Indeed, minimizing the distance between feature dis-
tributions of successive layers appears to be more important
to reduce the depth of DNNs than the choice of the metric
itself. Thus, the other metrics presented here can also be

used as regularizations in our method, but these may pro-
duce worse results.

K. Training from scratch with lower initial
depth

While having an oracle baseline on each setup is computa-
tionally expensive as brute-force research for all the com-
binations (+full retraining) is required, we present in Tab. 8
below the performance of 16 residual networks trained from
scratch on CIFAR-10 following the set of Tab. 9. Indeed,
we remove at initialization (a combination of) layers inside
a ResNet-18 and train the network from scratch. We call
this the “brute-force approach”.

Combination # B. Rem. Top-1 [%] MACs [M]

2222 (Original) 0 91.77 140.19

2221 1 91.86 121.31
2212 1 91.29 121.31
1222 1 90.82 121.31
2122 1 90.59 121.31
2211 2 91.96 102.44
1221 2 91.58 102.44
2112 2 91.45 102.44
2121 2 91.27 102.44
1212 2 91.25 102.44
1122 2 91.02 102.44
2111 3 91.78 83.56
1211 3 91.64 83.56
1121 3 90.94 83.56
1112 3 90.88 83.56
1111 4 91.45 64.69

LaCoOT(λ = 5) 4 90.99 64.69
LaCoOT(λ = 5) + retraining 4 91.42 64.69

Table 8. ResNet-18 trained from scratch on CIFAR-10 with layers
removed initially. For a given combination, we associate the num-
ber of blocks removed (# B. Rem.), the top-1 performance and
associated MACs at inference.

Our approach LaCoOT is achieving comparable perfor-
mance compared to these models. However, while the
“brute-force approach” has to perform 16 separate trainings,
LaCoOT can produce the same 16 subnetworks in one train-
ing only, hence being very efficient. By further retraining
the pruned architecture, we recover performance, compara-
ble to the original model, as shown in the last line.

L. Details on the learning strategies employed
Image Classification. The training hyperparameters used
in the experiments are presented in Table 9. Our code is
available at https://github.com/VGCQ/LaCoOT.

CIFAR-10 is augmented with per-channel normalization,
random horizontal flipping, and random shifting by up to
four pixels in any direction. For the datasets of DomainBed,
the images are augmented with per-channel normalization,

https://github.com/VGCQ/LaCoOT


Model Dataset Epochs Batch Opt. Mom. LR Milestones Drop Factor Weight Decay

ResNet-18 CIFAR-10 160 128 SGD 0.9 0.1 [80, 120] 0.1 1e-4
Swin-T CIFAR-10 160 128 SGD 0.9 0.001 [80, 120] 0.1 1e-4

MobileNetv2 CIFAR-10 160 128 SGD 0.9 0.1 [80, 120] 0.1 1e-4

ResNet-18 Tiny-ImageNet-200 160 128 SGD 0.9 0.1 [80, 120] 0.1 1e-4
Swin-T Tiny-ImageNet-200 160 128 SGD 0.9 0.001 [80, 120] 0.1 1e-4

MobileNetv2 Tiny-ImageNet-200 160 128 SGD 0.9 0.1 [80, 120] 0.1 1e-4

ResNet-18 PACS 30 16 SGD 0.9 0.001 [24] 0.1 5e-4
Swin-T PACS 30 16 SGD 0.9 0.001 [24] 0.1 5e-4

MobileNetv2 PACS 30 16 SGD 0.9 0.001 [24] 0.1 5e-4

ResNet-18 VLCS 30 16 SGD 0.9 0.001 [24] 0.1 5e-4
Swin-T VLCS 30 16 SGD 0.9 0.001 [24] 0.1 5e-4

MobileNetv2 VLCS 30 16 SGD 0.9 0.001 [24] 0.1 5e-4

ResNet-18 Flowers-102 50 16 Adam 1e-4 0
Swin-T Flowers-102 50 16 Adam 1e-4 0

MobileNetv2 Flowers-102 50 16 Adam 1e-4 0

ResNet-18 DTD 50 16 Adam 1e-4 0
Swin-T DTD 50 16 Adam 1e-4 0

MobileNetv2 DTD 50 16 Adam 1e-4 0

ResNet-18 Aircraft 50 16 Adam 1e-4 0
Swin-T Aircraft 50 16 Adam 1e-4 0

MobileNetv2 Aircraft 50 16 Adam 1e-4 0

Table 9. The different employed learning strategies.

random horizontal flipping, random cropping, and resizing
to 224. The brightness, contrast, saturation, and hue are
also randomly affected with a factor fixed to 0.4. Tiny-
ImageNet-200 is augmented with per-channel normaliza-
tion and random horizontal flipping. Moreover, the images
of Flowers-102 are augmented with per-channel normaliza-
tion, random horizontal and vertical flipping combined with
a random rotation, and cropped to 224. DTD and Aircraft
are augmented with random horizontal and vertical flipping,
and with per-channel normalization.

Following [34] and [50], on CIFAR-10 and Tiny-
ImageNet-200, all the models are trained for 160 epochs,
optimized with SGD, having momentum 0.9, batch size
128, and weight decay 1e-4. The learning rate is decayed by
a factor of 0.1 at milestones 80 and 120. The initial learning
rate ranges from 0.1 for ResNet-18 and MobileNetv2, to 1e-
3 for Swin-T. Moreover, on PACS and VLCS, all the mod-
els are trained for 30 epochs, optimized with SGD, having
momentum 0.9, a learning rate of 1e-3 decayed by a factor
0.1 at milestone 24, batch size 16, and weight decay 5e-
4. Furthermore, on Aircraft, DTD, and Flowers-102, all the
models are trained following a transfer learning strategy. In-
deed, each model is initialized with its pre-trained weights
on ImageNet, trained for 50 epochs, optimized with Adam,
having a learning rate 1e-4 and batch size 16.

The experiments were mostly performed using an
NVIDIA RTX 3090.
Image Generation. DiT-XL/2 at 256× 256 image reso-
lution is fine-tuned on ImageNet for 5k training steps on

3 NVIDIA L40S using AdamW, no weight decay, with a
global batch size of 60 and a learning rate 1e-4. Only hori-
zontal flips were used to augment the training set. Follow-
ing common practice in the generative modeling literature,
we maintain an exponential moving average (EMA) of DiT
weights over training with a decay of 0,9999. All results re-
ported use the EMA model. The pre-trained model is taken
from the original paper [47] and the diffusion was done us-
ing the same details as in the original paper. We evaluate
the quality of the generated samples with Fréchet Inception
Distance (FID) [24], the standard metric for evaluating gen-
erative models of images. Following convention, we report
FID-50k using 250 sampling steps with clean-fid [46] and
classifier-free guidance scale of 1,5.
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